
IBM FlashSystem A9000
IBM FlashSystem A9000R
Version 12.0.3

Open API Reference Guide

IBM

SC27-8561-04

Note

Before using this document and the product it supports, read the information in “Notices” on page 75.

Publication number: SC27-8561-04. This publication applies to IBM FlashSystem A9000 and IBM FlashSystem A9000R
version 12.0.3 and to all subsequent releases and modifications until otherwise indicated in a newer publication.
© Copyright International Business Machines Corporation 2016, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

List of Figures.. v
List of Tables..vii

About this guide... ix
Who should use this guide.. ix
Conventions used in this guide... ix
Related information and publications...ix
Getting information, help, and service..ix
IBM Publications Center.. x
Sending or posting your comments... x

Chapter 1. Introduction... 1
Storage Management Initiative Specifications (SMI-S) overview.. 1
Common Information Model (CIM) agent overview..1

Common Information Model (CIM) concepts.. 2
Common Information Model (CIM) agent components..3
Open API element definitions..4
Common Information Model (CIM) agent security... 5

Chapter 2. Installation and configuration... 7
Multitenancy feature support information.. 7

Chapter 3. Communication concepts and methods..9
Common Information Model (CIM) agent communication concepts... 9
Common Information Model (CIM) agent communication methods... 9

Obtaining a single class from the target namespace.. 10
Obtaining a single instance from the target namespace...11
Deleting a single instance from the target namespace...11
Creating an instance in the target namespace.. 12
Modifying an existing instance in the target namespace.. 12
Enumerating classes within a defined target namespace...13
Enumerating the names of subclasses of a class defined within the target namespace...................14
Enumerating instances of a defined class within the target namespace... 14
Enumerating the names of instances of a class within a target namespace......................................15
Processing a query against the target namespace..16
Enumerating classes or instances that are associated with a specific Common Information

Model (CIM) object..16
Enumerating the names of classes or instances associated with a specific Common

Information Model (CIM) object... 17
Enumerating the association objects that refer to a specific target class or instance.......................18
Enumerating the names of the association objects that refer to a specific target class or

instance... 19
Retrieving a single property value from an instance in the target namespace.................................. 20
Setting a single property value within an instance in the target namespace..................................... 20
Retrieving a single qualifier declaration from the target namespace...21
Creating or modifying a qualifier declaration in the target namespace..21
Enumerating qualifier declarations from the target namespace.. 22
Common Information Model (CIM) agent communication methods that cannot be used................ 22

Return error codes... 22

 iii

Chapter 4. Functional profiles, diagrams, and methods...27
Block Server performance profile... 27

Block Server Performance object model... 28
Block Server Performance methods.. 30

Block Services profile.. 31
Block Services object model..32
Block Services methods...35

iSCI Target Ports profile...39
iSCI Target Ports object model.. 40
iSCSI Target Ports methods... 42

Masking and Mapping profile...44
Masking and Mapping object model.. 46
Masking and Mapping methods... 48

Indication profile..52
Replication Services profile... 54

Replication Services object model...55
Replication Services methods..57
Replication Services indications.. 67

Job Control profile... 67
Job Control object model...68

Thin provisioning profile.. 68
Thin Provisioning object model..69
Thin Provisioning methods...69
Thin Provisioning indications... 71

Chapter 5. Conformance tests.. 73

Notices..75
Trademarks.. 76

Glossary..77
Index.. 85

iv

List of Figures

1. How a CIM agent works...2
2. The MOF compiler stores the model in the CIMOM data store.. 3
3. Block Server Performance SMI-S model for IBM FlashSystem A9000 and A9000R systems................. 29
4. Block Services SMI-S model for IBM FlashSystem A9000 and A9000R systems.................................... 32
5. Block Services Package with Settings and Capabilities model ...33
6. iSCSI Target Ports SMI-S model for IBM FlashSystem A9000 and A9000R systems.............................. 40
7. Masking and mapping physical model in IBM FlashSystem A9000 and A9000R systems...................... 45
8. Masking and mapping object model in SMI-S.. 46
9. Replication Services (Local) SMI-S model for IBM FlashSystem A9000 and A9000R systems...............55
10. Replication Services (Remote) SMI-S model for IBM FlashSystem A9000 and A9000R systems........ 56
11. Sample local group information retrieval... 58
12. Sample remote group information retrieval...61
13. Association classes for mirrored volumes and consistency groups..61
14. Job Control SMI-S model for IBM FlashSystem A9000 and A9000R systems.......................................68
15. Thin Provisioning SMI-S model for IBM FlashSystem A9000 and A9000R systems..............................69

 v

vi

List of Tables

1. Functional groups for the CIM agent.. 10
2. GetClass method parameters... 10
3. GetInstance method parameters... 11
4. DeleteInstance method parameters.. 12
5. CreateInstance method parameters.. 12
6. ModifyInstance method parameters.. 13
7. EnumerateClasses method parameters... 13
8. EnumerateClassNames method parameters... 14
9. EnumerateInstances method parameters... 14
10. EnumerateInstanceNames method parameters... 15
11. ExecuteQuery method parameters.. 16
12. Associators method parameters.. 16
13. Associators method parameters.. 17
14. References method parameters...18
15. ReferenceNames method parameters... 19
16. GetProperty method parameters... 20
17. SetProperty method parameters..20
18. GetQualifier method parameters..21
19. SetQualifier method parameters.. 21
20. Return error codes for the CIMOM... 23
21. Block Server Performance metrics...27
22. Synchronous actions...34
23. iSCSI terminology and CIM class names..41
24. Masking and mapping classes.. 46
25. ExposePaths use cases, parameters, and parameter values.. 50
26. HidePaths use cases, parameters, and parameter values.. 51
27. Indication types and object classes... 53
28. Mapping IBM FlashSystem A9000 and A9000R terminology to SMI terminology.................................56
29. Replication Service methods.. 57
30. Group management classes... 58
31. Extrinsic methods for group management...58
32. Replication management classes...60
33. Extrinsic methods for replication management...62
34. Operations, operation descriptions, and corresponding WaitForCopyState states................................64
35. Replication Services profile indications... 67
36. Replication Service methods.. 69
37. Thin Provisioning profile indications...72
38. SNIA CTP results...73

 vii

viii

About this guide

This publication introduces the IBM FlashSystem A9000 and IBM FlashSystem A9000R Open Application
Programming Interface (API), which is referred to as the Common Information Model (CIM) agent. This
publication can assist you in writing your CIM-based applications for the IBM FlashSystem A9000 and
A9000R Open API.

This publication supports the IBM FlashSystem A9000 and A9000R Open API microcode version 12.0.1.

Who should use this guide
This publication is for system administrators and system and application programmers, or whomever is
responsible for implementing the IBM FlashSystem A9000 and A9000R Open API and configuring the
Common Information Model (CIM) agent.

This publication assumes that you understand the general concepts of the operating system and Internet
capabilities for your enterprise.

Conventions used in this guide
These notices are used to highlight key information.

Note: These notices provide important tips, guidance, or advice.

Important: These notices provide information or advice that might help you avoid inconvenient or
difficult situations.

Attention: These notices indicate possible damage to programs, devices, or data. An attention
notice appears before the instruction or situation in which damage can occur.

Publications and related information
You can find additional information and publications related to IBM FlashSystem® A9000 and A9000R on
the following information sources.

• IBM FlashSystem A9000 on the IBM Knowledge Center (ibm.com/support/knowledgecenter/STJKMM)
• IBM FlashSystem A9000R on the IBM Knowledge Center (ibm.com/support/knowledgecenter/STJKN5)
• Storage Networking Industry Association (SNIA) website (www.snia.org)
• Distributed Management Task Force (DMTF) website (www.dmtf.org)

Getting information, help, and service
If you need help, service, technical assistance, or want more information about IBM products, you can
find various sources to assist you. You can view the following websites to get information about IBM
products and services and to find the latest technical information and support.

• IBM website (ibm.com®)
• IBM Support Portal website (www.ibm.com/storage/support)
• IBM Directory of Worldwide Contacts website (www.ibm.com/planetwide)

© Copyright IBM Corp. 2016, 2018 ix

http://www.ibm.com/support/knowledgecenter/STJKMM
http://www.ibm.com/support/knowledgecenter/STJKN5
http://www.snia.org/
http://www.dmtf.org/
http://www.ibm.com
http://www.ibm.com/storage/support
http://www.ibm.com/planetwide

IBM Publications Center
The IBM Publications Center is a worldwide central repository for IBM product publications and marketing
material.

The IBM Publications Center website (ibm.com/shop/publications/order) offers customized search
functions to help you find the publications that you need. You can view or download publications at no
charge.

Sending or posting your comments
Your feedback is important in helping to provide the most accurate and highest quality information.

To submit any comments about this guide:
• Go to IBM Knowledge Center (ibm.com/support/knowledgecenter), drill down to the relevant page,

and then click the Feedback link that is located at the bottom of the page.

The feedback form is displayed and you can use it to enter and submit your comments privately.
• You can post a public comment on the Knowledge Center page that you are viewing, by clicking Add

Comment. For this option, you must first log in to IBM Knowledge Center with your IBM ID.
• You can send your comments by email to starpubs@us.ibm.com. Be sure to include the following

information:

– Exact publication title and product version
– Publication form number (for example: SC01-0001-01)
– Page, table, or illustration numbers that you are commenting on
– A detailed description of any information that should be changed

Note: When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

x IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/knowledgecenter/
mailto:starpubs@us.ibm.com

Chapter 1. Introduction
The IBM FlashSystem A9000 and A9000R Open Application Programming Interface (API) is a non-
proprietary storage-management client application.

The Open API uses the Storage Management Initiative Specification (SMI-S), as defined by the Storage
Networking Industry Association (SNIA) to view LUN information.

You can use the Open API to integrate configuration-management support into storage resource
management (SRM) applications so that you can use your existing SRM application and infrastructures to
configure and manage IBM FlashSystem A9000 and A9000R systems. The Open API presents another
option for managing your systems by complementing the use of IBM Hyper-Scale Manager and the
command-line interface (CLI). The Open API is an embedded component of IBM FlashSystem A9000 and
A9000R systems.

You can implement the Open API without using a separate middleware application, like the IBM System
Storage Common Information Model (CIM) agent, which provides a CIM-compliant interface. The Open
API uses the CIM technology to manage proprietary devices as open system devices through storage
management applications. The Open API is used by storage management applications to communicate
with IBM FlashSystem A9000 and A9000R systems.

Storage Management Initiative Specifications (SMI-S) overview
The Storage Management Initiative Specifications (SMI-S) are the leading storage-management API
standards that are widely adopted by storage vendors. Using the SMI-S API, customers or independent
software vendors (ISVs) can develop their own software solutions for managing heterogeneous storage
deployments. For example, Microsoft is using SMI-S in Microsoft System Center Virtual Machine Manager
2012 to provide rapidly-integrated management of advanced disk arrays without needing any storage
vendor add-on.

All IBM storage products support the SMI-S standard, which defines the Common Information Model
(CIM) of each storage system management and is used as the base model for ISV and customer solution
development. The built-in support for SMI-S in IBM storage systems, including IBM FlashSystem A9000
and A9000R, facilitates the development of different management solutions such as monitoring and
control of physical storage, configuration and provisioning of SAN storage, and copying or protection of
data through remote mirroring and snapshots.

The SMI-S standard is driven by the Storage Networking Industry Association (SNIA), and the CIM
standard is driven by the Distributed Management Task Force (DMTF).

Common Information Model (CIM) agent overview
A Common Information Model (CIM) agent provides a means by which a device can be managed by
common building blocks rather than proprietary software. If a device is CIM-compliant, software that is
also CIM-compliant can manage the device. Vendor applications can manage CIM-compliant devices in a
common way, rather than using device-specific programming interfaces. You can perform tasks in a
consistent manner across devices and vendor applications.

A CIM agent consists of the components that are shown in Figure 1 on page 2. The main components
are the CIM object manager (CIMOM), the service location protocol (SLP), and the device provider. A
device can be a storage system such as IBM FlashSystem A9000 or IBM FlashSystem A9000R. The CIM
agent registers itself with the SLP Service Agent (SLP SA) to enable discovery by the client application.

The SLP DA is a directory service daemon that a client application calls to locate the CIMOM. The client
application and the CIMOM communicate through CIM messages. The CIMOM and device provider
communicate through method calls made from the CIMOM to the provider. The device provider
communicates with the device through proprietary calls.

© Copyright IBM Corp. 2016, 2018 1

Figure 1: How a CIM agent works

The CIMOM supports the following specifications and standards:

• Distributed Management Task Force (DMTF) Specification for CIM Operations over HTTP, Version 1.4
• CIM Specification, version 2.40.0
• Storage Networking Industry Association (SNIA) Storage Management Initiative Specification (SMI-S)

and the Shared Storage Model (SSM), a framework for describing storage architectures, version 1.6

These specifications allow a CIM agent to act as an open-system standards interpreter. Other CIM-
compliant storage resource management applications (IBM and non-IBM) can interoperate with each
other.

When you install, configure, and enable the CIM agent on a host server or an administrative workstation
within your network, that host server or workstation can communicate with your IBM FlashSystem A9000
or IBM FlashSystem A9000R through the CIM agent. CIM-compliant applications like the CIM agent can
manage the data on your system.

The following sites provide more information about the CIM standards:

• DMTF Common Information Model (CIM) Standards

http://www.dmtf.org/standards/cim/
• Storage Networking Industry Association Standards

http://www.snia.org/tech_activities/standards/curr_standards/smi/

Common Information Model (CIM) concepts
The Common Information Model (CIM) is an open approach to the management of systems and networks.

The CIM provides a common conceptual framework applicable to all areas of management, which
includes systems, applications, databases, networks, and devices. The CIM specification provides the
language and the methodology that is used to describe management data.

2 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

http://www.dmtf.org/standards/cim/
http://www.snia.org/tech_activities/standards/curr_standards/smi/

The CIM defines a set of classes with properties and associations that provide a conceptual framework.
The framework can be used to organize data for a specific managed environment, such as data storage.
CIM Schema 2.11 for Managing a Storage Array provides information about enabling management
applications to manage data in a common way.

The CIM standards and the Distributed Management Task Force (DMTF) specification provide information
about Web-based enterprise management (WBEM) operations over HTTP.

When the CIM object manager (CIMOM) first starts, it registers itself to the SLP. It provides information
about its location (IP address and port) and the type of service it provides. A client application finds the
location of the CIMOM by calling an SLP directory service. After this information is obtained, the client
application opens direct communication with the CIMOM.

A client sends requests to a CIMOM in the context of a CIM model. The model is defined by the CIM
schema and loaded into the repository of the CIMOM. Figure 2 on page 3 shows how the schema is
loaded into the data store of the CIMOM. The managed object format (MOF) compilation and creation of
the data store is managed automatically during installation.

As requests arrive, the CIMOM validates and authenticates each request. Requests are either directed to
the appropriate functional component of the CIMOM or directed to a device-specific handler called a
provider.

Figure 2: The MOF compiler stores the model in the CIMOM data store.

A provider makes device-unique programming interface calls on behalf of the CIMOM to satisfy a client
application request. Such requests generally map a CIM request to the API for a device. A request to get
an instance of a class or a property of an instance, for example, might be directed to a provider. Then, the
provider might make one or many requests of a device by using the unique API for the device. Figure 1 on
page 2 shows the communication structure between the device and the client application.

Common Information Model (CIM) agent components
With a Common Information Model (CIM) agent, application programmers can use common building
blocks rather than proprietary software or device-specific programming interfaces to manage CIM-
compliant devices. Standardization of the way that applications manage storage provides easier storage
management.

The following list describes a CIM agent and its components:
CIM agent

An agent that interprets open-system data as it is transferred between the API and a device or a
storage unit.

Introduction 3

CIM object manager (CIMOM)
A common conceptual framework for data management. Receives, validates, and authenticates client
application requests, and then directs requests to the appropriate functional component or to a
device provider.

client application
A storage management API that initiates a request to a device or a data storage unit such as an IBM
FlashSystem A9000 or IBM FlashSystem A9000R.

Note: A client application is not provided with the CIM agent, and it must be supplied by the
customer

Service Location Protocol (SLP)
The SLP DA is a directory service that a client application calls to locate the CIMOM. The SLP SA is a
service agent that enables discovery by a client application.

storage unit (also known as a storage server)
The final destination of a client application request and the processor of the request.

storage unit provider
A storage unit-specific handler that receives client application requests that are destined for its device
or storage unit.

Open API element definitions
The IBM FlashSystem A9000 and A9000R Open API elements include schemas, classes, properties,
methods, indications, associations, references, and qualifiers, as described in the following list.

Schema
A group of classes that are defined to a single namespace. Within the Common Information Model
(CIM) agent, the schemas that are supported are the ones that are loaded through the managed
object format (MOF) compiler.

Class
The definition of an object within some hierarchy. Classes can have methods and properties and be
the target of an association.

Property
A value that is used to characterize instances of a class.

Method
An implementation of a function on a class.

Indication
An object representation of an event.

Association
A class that contains two references which define a relationship between two objects.

Reference
A unique identifier of an object that is based on its key properties.

Qualifier
Additional information about other elements, classes, associations, indications, methods, method
parameters, instances, properties, or references.

Namespace

A namespace defines the scope over which an IBM FlashSystem A9000 and A9000R Open API schema
applies. IBM FlashSystem A9000 and A9000R Open API operations are always run within the context of a
namespace. An IBM FlashSystem A9000 and A9000R Open API schema or version is loaded into a
namespace when that schema is compiled by the MOF compiler. The namespace must be specified within
the message that the client sends to the Open API.

4 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Clients cannot create new namespaces. Attempts to do so result in errors.

Object name

An object name consists of a namespace path and a model path. The namespace path provides access to
the API implementation that is managed by the IBM FlashSystem A9000 and A9000R Open API. The
model path provides navigation within the implementation. The following example shows an object name:

http://cimom.host.com/root/ibm:CIM_Class.key1=value1,key2=value2

where http://cimom.host.com/root/ibm is the namespace path
and :CIM_Class.key1=value1,key2=value2 is the model path.

Common Information Model (CIM) agent security
The Common Information Model (CIM) agent can operate in both secure and unsecure modes.

Secure mode
All requests between the client application and the CIM object manager (CIMOM) are XML encoded
requests. They are sent over HTTP or HTTP over Secure Sockets Layer (SSL). The CIMOM, upon
receiving a request, parses the request and processes it. Responses, when they are returned to the
client application, are transformed into XML-encoded CIM status and returned in HTTP responses to
the client. The CIM agent runs in secure mode by using SSL by default.

Unsecure mode
Some vendor software cannot communicate with the CIM agent in a secure mode. You can still use
this vendor software by configuring the CIM agent to run with only basic user name and password
security. See the configuration instructions for your operating system for the instructions for
configuring the CIM agent for this less secure mode.

Introduction 5

6 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Chapter 2. Installation and configuration
The Common Information Model (CIM) agent is preinstalled and embedded on the administrative module,
and it is enabled by default and preconfigured. You can manage IBM FlashSystem A9000 and A9000R
systems from the CIM agent that is bundled with the administrative module.

Additional details regarding the preinstalled and preconfigured CIM agent:

• The embedded CIM agent agent does not require configuration changes to manage IBM FlashSystem
A9000 and A9000R systems.

• The CIM object manager (CIMOM) is installed and running on all three administrative modules. The
clients can connect to any of the administrative modules, and the same results are provided to the
CIMOM.

• You can use the cim_enable and cim_disable commands through the command-line interface (CLI) to
enable or disable the CIM agent. While the CIM agent is enabled, a watchdog process monitors it to
ensure it is always running.

The CIM agent embedded on the administrative module has the following limitations:

• The CIM agent can support only IBM FlashSystem A9000 and A9000R systems on which the
administrative module is located. The CIM agent is not able to manage any other IBM FlashSystem
A9000 or IBM FlashSystem A9000R system.

• The CIM agent must use secure connections over port 5989.
• The CIM agent uses the IBM FlashSystem A9000 or IBM FlashSystem A9000R system user account to

authenticate. To manage accounts, you must use IBM Hyper-Scale Manager or the CLI.

Note: CIM uses XML format when communicating with the IBM FlashSystem A9000 and A9000R
systems, so the user name and password can't include the following special characters: &, <, >, ', "

If you must use these characters in your user name and password, manually replace them with their
XML equivalents, as shown below:

& => &

< => <

> => >

' => '

" => "

Multitenancy feature support information
For IBM FlashSystem A9000 and A9000R, the multitenancy feature is supported.

To support this feature, IBM FlashSystem A9000 and A9000R implement the concept of a domain that
will link users to their dedicated pools, hosts, mirror targets, and other resources. A user can manage only
the storage resources to which they are associated, without the ability to modify or monitor other system
resources. The domain restricts the set of objects a user can manage to those associated with the
domain. If a user is associated with one or more domains, they are a domain user, otherwise, they are a
global user. This means that users in the same category but different domains will manage different
resources.

The Common Information Model (CIM) agent for IBM FlashSystem A9000 and A9000R, however, does not
support the multitenacy feature. CIM only supports the global user with the domain policy access value of
OPEN. CIM requires a global Storage administrator/Application administrator/Read-only user who can
manage all the resources in the system.

© Copyright IBM Corp. 2016, 2018 7

See IBM FlashSystem A9000 and A9000R: Architecture, Implementation, and Usage
(www.redbooks.ibm.com/abstracts/sg247659.html) and the IBM FlashSystem A9000 Product Overview or
IBM FlashSystem A9000R Product Overview for more information about the architecture of IBM
FlashSystem A9000 and A9000R systems.

8 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

http://www.redbooks.ibm.com/abstracts/sg247659.html

Chapter 3. Communication concepts and methods
Refer to the following topics for information about Common Information Model (CIM) agent
communication concepts and methods.

• “Common Information Model (CIM) agent communication concepts” on page 9
• “Common Information Model (CIM) agent communication methods” on page 9

Common Information Model (CIM) agent communication concepts
The Common Information Model (CIM) agent uses client communication and intrinsic and extrinsic
methods of communication.

Client communication

A client application communicates with the CIM agent through operation request messages that are
encoded within XML. The CIM agent returns responses with operation response messages. Requests and
responses are sub-elements of the <CIM MESSAGE> element.

A <MESSAGE> sent to the CIM agent must contain an ID attribute. A response from the CIM agent returns
this value and enables the client to track requests and their responses.

The CIM agent supports simple requests and simple responses. Simple requests are operation request
messages that contain the <SIMPLEREQ> XML tag. Simple responses are operation response messages
that contain the <SIMPLERSP> XML tag. A client application determines that the CIM agent supports only
simple operation requests and responses by examining the output of the OPTIONS method.

Intrinsic and extrinsic methods

All operations on the CIM agent are completed by running one or more methods. A method is either an
intrinsic method or an extrinsic method.

Intrinsic methods are supported by the CIM agent itself. These methods are included within
<IMETHODCALL> XML tags that are sent in messages to the CIM agent.

Extrinsic methods are defined by the schema that is supported by the CIM agent. These methods are
included within <METHODCALL> XML tags that are sent in messages to the CIM agent. Client applications
can call on the CIM agent by using these methods. These methods fall within certain functional groups
that might be supported by the CIM agent.

Common Information Model (CIM) agent communication methods
Client application calls to intrinsic methods can result in Common Information Model (CIM) agent calls to
the device provider. This result happens when the device provider surfaces the classes or instances that
are referenced in the calls.

The CIM agent returns IMETHODRESPONSE or METHODRESPONSE elements to the client application when
the intrinsic or extrinsic methods are used. These elements are contained within a MESSAGERESPONSE
XML tag.

Functional groups

Table 1 on page 10 describes the functional groups that are supported by the CIM agent. This
information is also returned to the client that makes an OPTIONS request to the CIM agent.

© Copyright IBM Corp. 2016, 2018 9

Table 1: Functional groups for the CIM agent

Functional group Parameters Supported or not supported

Basic read GetInstance

EnumerateInstances

EnumerateInstanceNames

GetProperty

Supported

Basic write SetProperty Not Supported

Schema manipulation CreateClass

ModifyClass

DeleteClass

Not Supported

Instance manipulation CreateInstance

ModifyInstance

DeleteInstance

Not Supported

Association traversal Associators

AssociatorNames

References

RefernceNames

Supported

Qualifier read GetQualifier

EnumerateQualifiers

Supported

Qualifier manipulation SetQualifier

DeleteQualifier

Not Supported

Query execution ExecQuery Supported

The most current information for the communication methods is in the MOF documentation. The MOF
documentation is in the mof folder in the CIM agent installation directory.

Obtaining a single class from the target namespace
The GetClass method returns a single class from the target namespace.

Parameters

Table 2 on page 10 describes the parameters of the GetClass method.

Table 2: GetClass method parameters

Parameter Type Description

ClassName String Defines the name of the class you
want to retrieve.

LocalOnly Boolean TRUE returns all properties,
methods, and qualifiers that are
overridden within the definition
of the class.

10 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 2: GetClass method parameters (continued)

Parameter Type Description

IncludeQualifiers Boolean TRUE returns all qualifiers for the
class, its properties, methods, or
method parameters. FALSE
returns no qualifiers.

IncludeClassOrigin Boolean TRUE returns the CLASSORIGIN
attribute of the class.

Return values

If successful, a single class is returned. Otherwise, one of the following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_FAILED

Obtaining a single instance from the target namespace
The GetInstance method returns a single instance from the target namespace.

Parameters
Table 3 on page 11 describes the parameters of the GetInstance method.

Table 3: GetInstance method parameters

Parameter Type Description

InstanceName String Defines the name of the instance
to retrieve.

IncludeClassOrigin Boolean TRUE returns the CLASSORIGIN
attribute of the class.

Return values

If successful, a single class is returned. Otherwise, one of the following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_NOT_FOUND
• CIM_ERR_FAILED

Deleting a single instance from the target namespace
The DeleteInstance method deletes a single instance from the target namespace.

Parameters

Table 4 on page 12 describes the parameters of the DeleteInstance method.

Communication concepts and methods 11

Table 4: DeleteInstance method parameters

Parameter Type Description

InstanceName String Defines the name of the instance
you want to delete.

Return values

The named instance is deleted or one of the following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_NOT_FOUND
• CIM_ERR_FAILED

Creating an instance in the target namespace
The CreateInstance method creates an instance in the target namespace. To use this method, the
instance cannot exist.

The CreateInstance method is a standard Common Information Model (CIM) method. The IBM
FlashSystem A9000 and A9000R Open API does not have any features that use this method.

Parameters

Table 5 on page 12 describes the parameters of the CreateInstance method.

Table 5: CreateInstance method parameters

Parameter Type Description

Instance Object The instance to be created. The
instance must be based on a
class that is already defined in
the target namespace.

Return values

If successful, the specified instance is created. Otherwise, one of the following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_ALREADY_EXISTS
• CIM_ERR_FAILED

Modifying an existing instance in the target namespace
The ModifyInstance method modifies an existing instance in the target namespace. The instance must
exist.

Parameters

Table 6 on page 13 describes the parameters of the ModifyInstance method.

12 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 6: ModifyInstance method parameters

Parameter Type Description

Instance Object Defines the modified instance.

Return values

If successful, the specified instance is updated. Otherwise, one of the following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_NOT_FOUND
• CIM_ERR_FAILED

Enumerating classes within a defined target namespace
The EnumerateClasses method enumerates classes within a defined target namespace.

Parameters

Table 7 on page 13 describes the parameters of the EnumerateClasses method.

Table 7: EnumerateClasses method parameters

Parameter Type Description

ClassName String Defines the name of the class for
which subclasses are to be
returned. If this field is NULL, all
base classes within the target
namespace are returned.

DeepInheritance Boolean TRUE returns all subclasses of
the specified class. FALSE returns
only immediate child subclasses.

LocalOnly Boolean TRUE returns all properties,
methods, and qualifiers, that are
overridden within the definition
of the class.

IncludeQualifiers Boolean TRUE returns all qualifiers for the
class, its properties, methods, or
method parameters. FALSE
returns no qualifiers.

IncludeClassOrigin Boolean TRUE returns the CLASSORIGIN
of the class.

Return values

If successful, zero or more classes (CIMClass) are returned. Otherwise, one of the following error codes is
returned:

• CIM_ERR_ACCESS_DENIED

Communication concepts and methods 13

• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_FAILED

Enumerating the names of subclasses of a class defined within the target namespace
The EnumerateClassNames method enumerates the names of subclasses of a class that is defined within
the target namespace.

Parameters

Table 8 on page 14 describes the parameters of the EnumerateClassNames method.

Table 8: EnumerateClassNames method parameters

Parameter Type Description

ClassName String Defines the name of the class for
which subclass names are to be
returned. If this field is NULL, all
base class names within the
target namespace are returned.

DeepInheritance Boolean TRUE returns all subclass names
of the specified class. FALSE
returns only immediate child
subclass names.

Return values

If successful, zero or more class names are returned. Otherwise, one of the following error codes is
returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_FAILED

Enumerating instances of a defined class within the target namespace
The EnumerateInstances method enumerates instances of a defined class within the target namespace.

Parameters

Table 9 on page 14 describes the parameters of the EnumerateInstances method.

Table 9: EnumerateInstances method parameters

Parameter Type Description

ClassName String Defines the name of the class for
which instances are to be
returned.

14 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 9: EnumerateInstances method parameters (continued)

Parameter Type Description

DeepInheritance Boolean TRUE returns all instances and all
properties of the instance,
including the properties added by
subclassing. FALSE returns only
properties that are defined for
the specified class.

IncludeClassOrigin Boolean TRUE returns the CLASSORIGIN
attribute of the class within the
instance.

Return values

If successful, zero or more instances (Objects) are returned. Otherwise, one of the following error codes is
returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_FAILED

Enumerating the names of instances of a class within a target namespace
The EnumerateInstanceNames method enumerates the names of the instances of a class within a target
namespace.

Parameters

Table 10 on page 15 describes the parameter of the EnumerateInstanceNames method.

Table 10: EnumerateInstanceNames method parameters

Header Header Description

ClassName String Defines the name of the class for
which instance names are
returned.

Return values

If successful, zero or more names of instances are returned. Otherwise, one of the following error codes is
returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_FAILED

Communication concepts and methods 15

Processing a query against the target namespace
The ExecuteQuery method processes a query against the target namespace.

Parameters

Table 11 on page 16 describes the parameters of the ExecuteQuery method.

Table 11: ExecuteQuery method parameters

Parameter Type Description

QueryLanguage String Defines the query language in
which the query parameter is
expressed.

Query String Defines the query to be initiated.

Return values

If successful, the method returns a table definition, followed by zero or more rows that correspond to the
results of the query. Otherwise, one of the following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_NOT_SUPPORTED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED
• CIM_ERR_QUERY_FEATURE_NOT_SUPPORTED
• CIM_ERR_INVALID_QUERY
• CIM_ERR_FAILED

Enumerating classes or instances that are associated with a specific Common
Information Model (CIM) object

The Associators method enumerates classes or instances that are associated with a specific Common
Information Model (CIM)object.

Parameters

Table 12 on page 16 describes the parameters of the Associators method.

Table 12: Associators method parameters

Parameter Type Description

ObjectName String Defines the class name or instance name that is the source of the
association.

AssocClass String If not NULL, indicates that all objects must be associated with the
source object through an instance of this class or one of its
subclasses.

ResultClass String If not NULL, indicates that all returned objects must be instances
of this class or one of its subclasses or be this class.

16 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 12: Associators method parameters (continued)

Parameter Type Description

Role String If not NULL, indicates that each return object must be associated
with the source object that plays the specified role. The name of
the property in the association class that refers to the source
object must match the value of this parameter.

ResultRole String If not NULL, indicates that each returned object must be
associated with the source object that plays the specified role.
That is, the name of the property in the association class that
refers to the returned object must match the value of this
parameter.

IncludeClassOrigin Boolean TRUE returns the CLASSORIGIN attribute of the class.

Return values

If successful, zero or more classes (CIMClass) or instances (Objects) are returned. Otherwise, one of the
following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_FAILED

Enumerating the names of classes or instances associated with a specific Common
Information Model (CIM) object

The AssociatorNames method enumerates the names of the classes or instances that are associated with
a specific Common Information Model (CIM) object.

Parameters

Table 13 on page 17 describes the parameters of the AssociatorNames method.

Table 13: Associators method parameters

Parameter Type Description

ObjectName String Defines the class name or
instance name that is the source
of the association.

AssocClass String If not NULL, indicates that
returned objects are associated
with the source object through an
instance of this class or one of its
subclasses.

ResultClass String If not NULL, indicates that all
returned object paths must
identify instances of this class or
one of its subclasses or must be
this class.

Communication concepts and methods 17

Table 13: Associators method parameters (continued)

Parameter Type Description

Role String If not NULL, the name of the
property in the association class
that refers to the source object
must match the value of this
parameter.

ResultRole String If not NULL, the name of the
property in the association class
that refers to the return object
must match the value of this
parameter.

Return values

If successful, zero or more class paths (CIMObjectPath) are returned. Otherwise, one of the following
error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_FAILED

Enumerating the association objects that refer to a specific target class or instance
The References method enumerates the association objects that refer to a particular target class or
instance.

Parameters

Table 14 on page 18 describes the parameters of the References method.

Table 14: References method parameters

Parameter Type Description

ObjectName String Defines the class name or
instance name whose referring
objects are to be returned.

ResultClass String If not NULL, indicates that all
returned objects must be
instances of this class or one of
its subclasses or must be this
class.

Role String If not NULL, must be a valid
property name. Each returned
object must refer to the target
object through a property whose
name matches the value of this
parameter.

IncludeClassOrigin Boolean TRUE returns the CLASSORIGIN
attribute of the class.

18 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Return values

If successful, zero or more classes (CIMClass) or instances (Objects) are returned. Otherwise, one of the
following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_FAILED

Enumerating the names of the association objects that refer to a specific target class or
instance

The ReferenceNames method enumerates the names of the association objects that refer to a particular
target class or instance.

Parameters

Table 15 on page 19 describes the parameters of the ReferenceNames method.

Table 15: ReferenceNames method parameters

Parameter Type Description

ObjectName String Defines the class name or
instance name whose referring
objects are to be returned.

ResultClass String If not NULL, indicates that all
returned objects must be
instances of this class or one of
its subclasses or must be this
class.

Role String If not NULL, must be a valid
property name. Each returned
object must refer to the target
object through a property whose
name matches the value of this
parameter.

Return values

If successful, the return value specifies the value of the requested property. Otherwise, one of the
following error codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_NOT_FOUND
• CIM_ERR_NO_SUCH_PROPERTY
• CIM_ERR_FAILED

Communication concepts and methods 19

Retrieving a single property value from an instance in the target namespace
The GetProperty method retrieves a single property value from an instance in the target namespace.

Parameters

Table 16 on page 20 describes the parameters of the GetProperty method.

Table 16: GetProperty method parameters

Parameter Type Description

InstanceName String Defines the name of the instance.

Property String The name of the property whose
value is to be returned from the
instance.

Return values

If successful, the return value specifies the value of the requested property. Otherwise, one of the
following return codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_INVALID_CLASS
• CIM_ERR_NOT_FOUND
• CIM_ERR_NO_SUCH_PROPERTY
• CIM_ERR_FAILED

Setting a single property value within an instance in the target namespace
The SetProperty method sets a single property value within an instance in the target namespace. But the
IBM FlashSystem A9000 and A9000R Open API Common Information Model (CIM) agent does not have
any features that use this method.

Parameters

Table 17 on page 20 describes the parameters of the SetProperty method.

Table 17: SetProperty method parameters

Parameter Type Description

InstanceName String Defines the name of the instance.

Property String The name of the property whose
value is to be returned from the
instance.

Return values

If successful, the instance is updated. Otherwise, one of the following return codes is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER

20 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

• CIM_ERR_INVALID_CLASS
• CIM_ERR_NOT_FOUND
• CIM_ERR_NO_SUCH_PROPERTY
• CIM_ERR_TYPE_MISMATCH
• CIM_ERR_FAILED

Retrieving a single qualifier declaration from the target namespace
The GetQualifier method retrieves a single qualifier declaration from the target namespace.

Parameters

Table 18 on page 21 describes the parameters of the GetQualifier method.

Table 18: GetQualifier method parameters

Parameter Type Description

QualifierName String Defines the qualifier whose
declaration is to be returned.

Return values

If successful, the value of the qualifier is returned. Otherwise, one of the following return codes is
returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_NOT_FOUND
• CIM_ERR_FAILED

Creating or modifying a qualifier declaration in the target namespace
The SetQualifier method creates or updates a qualifier declaration in the target namespace.

Parameters

Table 19 on page 21 describes the parameters of the SetQualifier method.

Table 19: SetQualifier method parameters

Parameter Type Description

QualifierDeclaration Void Defines the qualifier declaration
to be added to the target
namespace.

Return values

If successful, the qualifier is updated in the target namespace. Otherwise, one of the following error codes
is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER

Communication concepts and methods 21

• CIM_ERR_NOT_FOUND
• CIM_ERR_FAILED

Enumerating qualifier declarations from the target namespace
The EnumerateQualifiers method enumerates qualifier declarations from the target namespace.

There are no parameters for this method.

Return values

If successful, zero or more qualifier declarations are returned. Otherwise, one of the following error codes
is returned:

• CIM_ERR_ACCESS_DENIED
• CIM_ERR_INVALID_NAMESPACE
• CIM_ERR_INVALID_PARAMETER
• CIM_ERR_FAILED

Common Information Model (CIM) agent communication methods that cannot be used
The following Common Information Model (CIM) agent communication methods cannot be used because
they are not supported by IBM FlashSystem A9000 and A9000R:

• “DeleteClass method (not supported)” on page 22
• “CreateClass method (not supported)” on page 22
• “ModifyClass method (not supported)” on page 22
• “DeleteQualifier method (not supported)” on page 22

DeleteClass method (not supported)
The DeleteClass method deletes a single class from the target namespace, but it is not supported and
cannot be used. The CIM_ERR_NOT_SUPPORTED error code is returned to the client application if a
request to process this operation is received.

CreateClass method (not supported)
The CreateClass method creates a class from the target namespace, but it is not supported and cannot be
used. The CIM_ERR_NOT_SUPPORTED error code is returned to the client application if a request to
process this operation is received.

ModifyClass method (not supported)
The ModifyClass method modifies an existing class, but it is not supported and cannot be used. The
CIM_ERR_NOT_SUPPORTED error code is returned to the client application if a request to process this
operation is received.

DeleteQualifier method (not supported)
The DeleteQualifier method deletes a single class from the target namespace, but it is not supported and
cannot be used. The CIM_ERR_NOT_SUPPORTED error code is returned to the client application if a
request to process this operation is received.

Return error codes
The Common Information Model object manager (CIMOM) returns status to the client application.

The return status is sent to the client application in one of the following ways:

• Through HTTP status messages
• Through error codes that are contained within <METHODRESPONSE> or <IMETHODRESPONSE> XML tags.

22 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 20 on page 23 describes the vendor-specific status codes that the CIMOM might return. For CIM
standard return codes, see the CIM schema.

Table 20: Return error codes for the CIMOM

Code Symbolic Name Definition

1 CIM_ERR_FAILED A general error occurred that is not covered by a
more specific error code.

2 CIM_ERR_ACCESS_DENIED Access to a CIM resource was not available to
the client.

3 CIM_ERR_INVALID_NAMESPACE The target namespace does not exist.

4 CIM_ERR_INVALID_PARAMETER One or more parameter values that are passed
to the method were not valid.

5 CIM_ERR_INVALID_CLASS The specified class does not exist.

6 CIM_ERR_NOT_FOUND The requested object was not found.

7 CIM_ERR_NOT_SUPPORTED The requested operation is not supported.

8 CIM_ERR_CLASS_HAS_CHILDREN The operation cannot be carried out on this
class because it has subclasses.

9 CIM_ERR_CLASS_HAS_INSTANCES The operation cannot be carried out on this
class because it has instances.

10 CIM_ERR_INVALID_SUPERCLASS The operation cannot be carried out because
the specified superclass does not exist.

11 CIM_ERR_ALREADY_EXISTS The operation cannot be carried out because
the object exists.

12 CIM_ERR_NO_SUCH_PROPERTY The specified property does not exist.

13 CIM_ERR_TYPE_MISMATCH The value that is supplied is not compatible with
the type that is specified.

14 CIM_ERR_QUERY_LANGUAGE_NOT_SUPPORTED The query language is not recognized or
supported.

15 CIM_ERR_INVALID_QUERY The query is not valid for the specified query
language.

16 CIM_ERR_METHOD_NOT_AVAILABLE The extrinsic method cannot be run.

17 CIM_ERR_METHOD_NOT_FOUND The specified extrinsic method does not exist.

20 CIM_ERR_LOW_ON_MEMORY There is not enough memory.

21 XMLERROR An XML error occurred.

22 CIM_ERR_LISTNER_ALREADY_DEFINED The listener is already defined.

23 CIM_ERR_INDICATION_NOT_COLLECTED The indications are not collected.

24 CIM_ERR_NO_METHOD_NAME The method name is null.

25 CIM_ERR_INVALID_QUALIFIER_DATATYPE The data type qualifier is not valid.

26 CIM_ERR_NAMESPACE_NOT_IN_MANAGER The namespace value is not found.

27 CIM_ERR_INSTANTIATE_FAILED The instantiation failed.

Communication concepts and methods 23

Table 20: Return error codes for the CIMOM (continued)

Code Symbolic Name Definition

28 CIM_ERR_FAILED_TO_LOCATE_INDICATION_
HANDLER

The indication handler is not found.

29 CIM_ERR_IO_EXCEPTION An I/O exception occurred.

30 CIM_ERR_COULD_NOT_DELETE_FILE The file cannot be deleted.

31 INVALID_QUALIFIER_NAME The qualifier name is null.

32 NO_QUALIFIER_VALUE The qualifier value is null.

33 NO_SUCH_QUALIFIER1 There is no such qualifier.

34 NO_SUCH_QUALIFIER2 There is no such qualifier.

35 QUALIFIER_UNOVERRIDABLE The qualifier cannot be overwritten.

36 SCOPE_ERROR A scope error occurred.

37 TYPE_ERROR A type error occurred.

38 CIM_ERR_MISSING_KEY The key is missing.

39 CIM_ERR_KEY_CANNOT_MODIFY The key cannot be modified.

40 CIM_ERR_NO_KEYS There are no keys found.

41 CIM_ERR_KEYS_NOT_UNIQUE The keys are not unique.

100 CIM_ERR_SET_CLASS_NOT_SUPPORTED The set class operation is not supported.

101 CIM_ERR_SET_INSTANCE_NOT_SUPPORTED The set instance operation is not supported.

102 CIM_ERR_QUALIFIER_NOT_FOUND The qualifier value is not found.

103 CIM_ERR_QUALIFIERTYPE_NOT_FOUND The qualifier type is not found.

104 CIM_ERR_CONNECTION_FAILURE The connection failed.

105 CIM_ERR_FAIL_TO_WRITE_TO_SERVER There is a fail to write to the server.

106 CIM_ERR_SERVER_NOT_SPECIFIED The server is not specified.

107 CIM_ERR_INDICATION_ERROR There is an indication processing error.

108 CIM_ERR_FAIL_TO_WRITE_TO_CIMOM A write operation to the CIMOM failed.

109 CIM_ERR_SUBSCRIPTION_EXISTS A subscription exists.

110 CIM_ERR_INVALID_SUBSCRIPTION_DEST The subscription destination is not valid.

111 CIM_ERR_INVALID_FILTER_PATH The filter path is not valid.

112 CIM_ERR_INVALID_HANDLER_PATH The handler path is not valid.

113 CIM_ERR_NO_FILTER_INSTANCE The filter instance is not found.

114 CIM_ERR_NO_HANDLER_INSTANCE The handler instance is not found.

115 CIM_ERR_UNSUPPPORTED_FILTER The filter that is referenced in the subscription
is not supported.

116 CIM_ERR_INVALID_TRUSTSTORE The CIMOM cannot be connected to because
there is a bad or missing truststore or an
incorrect truststore password.

24 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 20: Return error codes for the CIMOM (continued)

Code Symbolic Name Definition

117 CIM_ERR_ALREADY_CONNECTED The CIMOM cannot be connected to because it
is already connected.

118 CIM_ERR_UNKNOWN_SERVER The server is unknown. The CIMOM cannot
accept connections.

119 CIM_ERR_INVALID_CERTIFICATE The correct certificate cannot be found in the
truststore. The CIMOM cannot accept
connections.

Communication concepts and methods 25

26 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Chapter 4. Functional profiles, diagrams, and
methods

The following sections detail the functional profiles, diagrams, and methods of the Common Information
Model (CIM).

The functional diagrams show specific functions that the CIM agent provides and illustrate the
architecture of the CIM agent for IBM FlashSystem A9000 and A9000R systems. The method sections
describe the uses of and parameters associated with the methods associated with each profile and
matching diagram(s).

Block Server performance profile
Block server performance is the Storage Management Initiative Specification (SMI-S) subprofile that
describes how to present performance statistics. It uses a number of metrics with definitions that are
standardized for all storage systems that are represented by SMI-S. These metrics are defined in the
CIM_BlockStorageStatisticalData class definition.

For the Common Information Model (CIM) agent for IBM FlashSystem A9000 and A9000R systems,
statistics are only provided for the volumes and hosts.

Table 21 on page 27 provides details about the specific metrics that are supported by IBM FlashSystem
A9000 and A9000R arrays and their components. In addition, the table provides a list of ElementType
values that correspond to the components of IBM FlashSystem A9000 and A9000R arrays.

Table 21: Block Server Performance metrics

Equivalent CIM class

Corresponding
ElementType
value

Properties that are supplied in associated
CIM_BlockStorage StatisticalData instances

Volume IBMTSDS_
SEVolumeStatistics

8 TotalIOs

KBytesTransferred

KBytesRead

KBytesWritten

ReadIOs

ReadHitIOs

WriteIOs

WriteHitIOs

IOTimeCounter

ReadIOTimeCounter

WriteIOTimeCounter

ReadHitIOTimeCounter

WriteHitIOTimeCounter

© Copyright IBM Corp. 2016, 2018 27

Table 21: Block Server Performance metrics (continued)

Equivalent CIM class

Corresponding
ElementType
value

Properties that are supplied in associated
CIM_BlockStorage StatisticalData instances

Host IBMTSDS_HostStatistics 4 TotalIOs

KBytesTransferred

KBytesRead

KBytesWritten

ReadIOs

ReadHitIOs

WriteIOs

WriteHitIOs

IOTimeCounter

ReadIOTimeCounter

WriteIOTimeCounter

ReadHitIOTimeCounter

WriteHitIOTimeCounter

Block Server Performance object model
Two major categories of classes in the object model determine the way clients retrieve performance
statistics.

The following categories are used:

• The first category is a set of classes where each instance of the class represents a single performance
statistics record. For example, the statistics for a single volume.

• The second is a set of classes that are required to use an extrinsic method to retrieve a string that
contains a batch of performance statistics.

See Figure 3 on page 29 for the Block Server Performance Storage Management Initiative Specification
(SMI-S) model for IBM FlashSystem A9000 and A9000R systems.

28 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Figure 3: Block Server Performance SMI-S model for IBM FlashSystem A9000 and A9000R systems

The classes that inherit from CIM_BlockStorageStatisticalData IBMTSDS_SEVolumeStatistics and
IBMTSDS_HostStatistics are of the first category. Each instance contains properties that describe the
performance statistics of a single instance of IBMTSDS_SEVolume or IBMTSDS_SystemSpecificCollection.

IBMTSDS_PerformanceStatisticsCollection does not fall under either of the categories, but is a class that
associates all of the Block Server Performance-related classes for a particular system.

The rest of the classes are under the second category. They are used for batch gathering of statistics.
IBMTSDS_PerformanceStatisticsService contains the GetStatisticsCollection method, which you use to
get a string representation of a batch of statistics instances. IBMTSDS_PerformanceStatisticsCapabilities
defines what the performance statistics-related capabilities of the Common Information Model (CIM)
agent are.

Functional profiles, diagrams, and methods 29

The classes that inherit from CIM_BlockStatisticsManifest define filters for the statistics that are returned
by GetStatisticsCollection.

IBMTSDS_BlockStatisticsManifestCollection is a group of BlockStatisticsManifest instances that gets
passed into the GetStatisticsCollection method. The BlockStatisticsManifest classes contain Boolean
properties, one for each property in the corresponding BlockStorageStatisticalData class.

If a BlockStorageStatisticalData had a statistics property XXX, then the corresponding
BlockStatisticsManifest class would have a boolean property called IncludeXXX. If IncludeXXX was set to
true, GetStatisticsCollection would return the data for XXX. If IncludeXXX was set to false,
GetStatisticsCollection would not return the data for XXX.

The IBM FlashSystem A9000 and A9000R CIM agent does not allow clients to pick and choose which
properties it is interested in. Therefore, all of the IncludeXXX properties for the XXX properties that the
CIM agent supports are set to true.

All statistics attributes are in units of kilobytes, milliseconds, or just a count. For example, the number of
I/O operations. However, the statistics are just running counters. They do not provide information about
rates. For example, I/O operations per second. When the counters reach an internal limit, they roll back to
zero. If the client application is monitoring these statistics at a constant rate to calculate I/O rates, it must
know when the counters roll back to zero.

Block Server Performance methods
The following sections describe functional methods associated with the Block Server Performance profile
and object model, including uses of and parameters used by each method.

• “Obtaining performance statistics data” on page 30
• “Obtaining volume or host statistics” on page 31

Obtaining performance statistics data
The IBMTSDS_PerformanceStatisticsService.GetStatisticsCollection method returns a string
representation of a set of performance statistics data.

Parameters

The following list describes the parameters of the
IBMTSDS_PerformanceStatisticsService.GetStatisticsCollection method.

ElementTypes
An array of values that indicates the type of element that returns statistics. Volumes and hosts use the
standard value in the Common Information Model (CIM) schema. If this parameter is left null, the
default value 4 and 8 are used. See the BlockServerPerformance.mof file for details.

ManifestCollection (required)
A reference to an instance of the collection that represents a collection of BlockStatisticsManifest
instances to use to filter the output. This parameter is not a reference to BlockStatisticsManifest. It is
a ManifestCollection because the method can return statistics for multiple ElementTypes values at the
same time, and each ElementType instance has its own BlockStatisticsManifest. The CIM agent
currently supplies one instance of ManifestCollection, which is the default ManifestCollection.

Statistics
An output parameter that is an array of strings that represents a batch of performance data. Each
array element is an instance of a statistics class. Each array element is formatted as a semicolon-
separated list of values. The order of the returned values matches the properties definition order in
the corresponding CIM_BlockStatisticsManifest class in mof. For example, the statistics output
parameter might display as follows:

IBM.2810-6000095-100916;8;20110118225313.890995+480;3111;166920;20864419;1426;
1422;1119849;1078871;67382;1685;1673;19744570;19692176;99538;
IBM.2810-6000095-100930;8;20110118225313.891038+480;8386;504537;76662400;1426;
1422;1182723;1133669;67382;6960;6940;75479677;75360317;437155;

30 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

where each row is an array element. The ElementType value of each row is 8, which refers to volumes.
So there are two instances of VolumeStatistics with attributes of each in semicolon-separated strings,
in the order they are defined in the IBMTSDS_SEVolumeManifest class in
BlockServerPerformance.mof.

{
StatisticTime;TotalIOs;KBytesTransferred;IOTimeCounter;ReadIOs;ReadHitIOs;
ReadIOTimeCounter;ReadHitIOTimeCounter;KBytesRead;WriteIOs;WriteHitIOs;
WriteIOTimeCounter;WriteHitIOTimeCounter;KBytesWritten; }

Obtaining volume or host statistics
You can use the IBMTSDS_PerformanceStatisticsService.GetStatisticsCollection method to obtain volume
or host statistics.

1. Use enumerateInstanceNames on IBMTSDS_PerformanceStatisticsService and then save the
reference.

2. Use enumerateInstancesNames on IBMTSDS_BlockStatisticsManifestCollection and then save the
reference.

3. Use enumerateInstances on IBMTSDS_VolumeManifest (or CIM_BlockStatisticsManifest and look for
the ElementType value 8) or IBMTSDS_ SystemSpecificCollection (or CIM_BlockStatisticsManifest and
look for the ElementType value 4), and then save BulkFormat.

4. Use invokeMethod on GetStatisticsCollection with the ElementType value set to 8 for volume or to 4
for host (if ElementType is null, ElementType values of 4 and 8 are assigned), the StatisticsFormat
value set to 2, the ManifestCollection value obtained in the second step, and the
PerformanceStatisticsCollection instance value that is obtained in the first step.

5. Check the output statistics (Statistics). For each array element in the statistics output, string tokenize
on semicolon, and save the properties in a table. Check the properties.

Block Services profile
The IBM FlashSystem A9000 and A9000R system architecture provides a means for you to customize the
underlying resources.

The following definitions describe the various layers of abstraction that make this customization possible:
The primordial storage pool

Logical entity that contains all the available unformatted or unprepared disk capacity on an array.
Device Concrete StoragePool instances are allocated from Primordial StoragePool. IBM FlashSystem
A9000 and A9000R arrays have only one Primordial StoragePool instance per array.

Concrete storage pools
Logical entities that are allocated from Primordial StoragePool. Concrete StoragePool instances
enable storage administrators to manage relationships between volumes and snapshots and to define
separate capacity provisioning and snapshot requirements for separate applications and
departments. Storage pools are not tied to specific physical resources, nor are they part of the data-
distribution scheme.

IBM FlashSystem A9000 and A9000R support two types of concrete storage pools: VirtualPool and
SnapshotPool. A VirtualPool instance is allocated from Primordial StoragePool directly. It contains
volumes and at most one SnapshotPool instance.

A SnapshotPool instance is allocated from a VirtualPool instance and contains snapshots of volumes
in the VirtualPool instance in which this SnapshotPool instance is located. A VirtualPool instance
without its own SnapshotPool instance cannot contain snapshots

.
Storage volumes

Logical units that can be mapped to a host or a cluster. Volumes are created from storage pools and
are managed within the context of storage pools.

Functional profiles, diagrams, and methods 31

For the IBM FlashSystem A9000 and A9000R systems, volumes do not occupy physical capacity
when created. Space is allocated when data is written to the volume. Moreover, volumes are not
exclusively associated with a subset of physical resources, nor is there a permanent static relationship
between logical volumes and specific physical resources.

See IBM FlashSystem A9000 and A9000R: Architecture, Implementation, and Usage on the IBM
Redbooks® website (www.redbooks.ibm.com) and the IBM FlashSystem A9000 Product Overview or IBM
FlashSystem A9000R Product Overview for more information about the architecture of IBM FlashSystem
A9000 and A9000R systems.

Block Services object model
The Common Information Model (CIM) agent is designed to allow for the retrieval of information for each
layer of abstraction.

Starting with the 12.0.1 release, the Storage Management Initiative Specification (SMI-S) specification
1.6 is fully supported. You can create, delete, or modify services.

See Figure 4 on page 32 for the Block Services SMI-S model for IBM FlashSystem A9000 and A9000R
systems.

Figure 4: Block Services SMI-S model for IBM FlashSystem A9000 and A9000R systems

32 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

http://www.redbooks.ibm.com
http://www.redbooks.ibm.com

As required by SMI-S, each instance of storage pool has a corresponding instance of Storage Capabilities.
Each instance of Storage Capabilities is associated with the instances of Storage Setting that are valid for
creating volumes from the associated storage pool. See Figure 5 on page 33 for the Block Services
package with settings and capabilities model.

Figure 5: Block Services Package with Settings and Capabilities model

Functional profiles, diagrams, and methods 33

StorageSetting is a class that contains properties to specify the quality of service, such as
DataRedundancy or parity layout. When you create a StorageVolume or Concrete StoragePool instance, a
StorageSetting instance is supplied as the Goal parameter for the appropriate method.

The IBM FlashSystem A9000 and A9000R CIM agent has four CIM_StorageSetting instances defined:

IBMTSDS_VirtualPoolSetting.InstanceID="IBMTSDS:IBM XIV Virtual Storage Pool Setting"
This StorageSetting instance is supplied as the Goal parameter for the CreateOrModifyStoragePool
method to create or modify a VirtualPool instance.

IBMTSDS_SnapshotPoolSetting.InstanceID="IBMTSDS:IBM XIV Snapshot Pool Setting"
This StorageSetting instance is supplied as the Goal parameter for the CreateOrModifyStoragePool
method to create or modify a SnapshotPool instance.

IBMTSDS_DataTypeSetting.InstanceID="IBMTSDS:XIVBlockSize"
This StorageSetting instance is supplied as the Goal parameter for the
CreateOrModifyElementFromStoragePool and CreateOrModifyElementsFromStoragePool methods to
create or modify StorageVolume instances with size in terms of GB.

The system allocates the soft volume size as the minimum number of discrete 1 GB increments
needed to meet the requested volume size.

IBMTSDS_DataTypeSetting.InstanceID="IBMTSDS:SystemBlockSize"
This StorageSetting instance is supplied as the Goal parameter for the
CreateOrModifyElementFromStoragePool and CreateOrModifyElementsFromStoragePool methods to
create or modify StorageVolume instances with size in terms of blocks.

The volume's capacity is indicated as a discrete number of 512-byte blocks. The system allocates the
soft volume size that is used within the StoragePool instance as the minimum number of discrete 1 GB
increments to meet the requested size. However, the size that is reported to hosts is equivalent to the
precise number of blocks defined.

For more information about the block services object model, see the BlockServices.mof file.

Extrinsic Methods

Use an associator's CIM client request and the association class CIM_ElementCapabilities between an
instance of CIM_StorageConfigurationService and the result class CIM_StorageConfigurationCapabilities.

The SupportedSynchronousActions and SupportedAsynchronousActions properties identify whether the
action is initiated synchronously or asynchronously. The IBM FlashSystem A9000 and A9000R CIM agent
supports the following synchronous actions in the IBMTSDS_StorageConfigurationService class:

Table 22: Synchronous actions

Synchronous actions IBM FlashSystem A9000 and A9000R CIM functions

StoragePool Creation CreateOrModifyStoragePool

StoragePool Modification CreateOrModifyStoragePool

StoragePool Deletion DeleteStoragePool

StorageVolume Creation CreateOrModifyElementFromStoragePool

CreateorModifyElementsFromStoragePool

StorageVolume Modification CreateOrModifyElementFromStoragePool

CreateorModifyElementsFromStoragePool

StorageVolume Expansion CreateOrModifyElementFromStoragePool

CreateorModifyElementsFromStoragePool

34 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 22: Synchronous actions (continued)

Synchronous actions IBM FlashSystem A9000 and A9000R CIM functions

StorageVolume Shrinking CreateOrModifyElementFromStoragePool

CreateorModifyElementsFromStoragePool

StorageVolume Deletion Return to StoragePool

StorageVolume Deletion Return Elements to StoragePool

The following functions can be used to determine what sizes of Concrete StoragePool and StorageVolume
instances can be created:
IBMTSDS_PrimordialStoragePool.GetSupportedSizeRange

Determines the supported physical size of Concrete StoragePool instances that can be created in
Primordial StoragePool.

IBMTSDS_VirtualPool.GetSupportedSizeRange
Determines the supported soft size of StorageVolume instances that can be created in a Concrete
StoragePool instance.

Block Services methods
The following sections describe functional methods associated with the Block Services profile and object
model, including uses of and parameters used by each method.

• “Creating or modifying a virtual pool or snapshot pool” on page 35
• “Deleting a storage pool” on page 36
• “Creating, modifying, and/or moving multiple volumes in a single method call” on page 36
• “Creating, modifying, and/or moving a single volume” on page 37
• “Deleting a single volume” on page 38
• “Deleting multiple volumes concurrently” on page 38
• “Determining sizes to use to create elements from the primordial storage pool” on page 38
• “Determining sizes to use to create elements from the virtual storage pool” on page 39
• “Creating a concrete storage pool” on page 39
• “Creating a storage volume” on page 39

Creating or modifying a virtual pool or snapshot pool
The IBMTSDS_StorageConfigurationService. CreateOrModifyStoragePool method creates or modifies a
VirtualPool instance or a SnapshotPool instance. The Primordial StoragePool instance cannot be created
or modified.

Parameters

The following list describes the parameters of the IBMTSDS_StorageConfigurationService.
CreateOrModifyStoragePool method.

Pool (required for modification)
As an input parameter, specifies whether you want to create or modify a pool. If you specify a
reference to a pool, it indicates that you want to modify the pool. If the parameter is null, it indicates
that you want to create pool.

InPools
InPools specifies from which pool to create a pool. To create a VirtualPool instance, only the object
reference of IBMTSDS_PrimordialStoragePool is allowed. All VirtualPool instances are created in
Primordial StoragePool. To create a SnapshotPool instance, only the object reference of
IBMTSDS_VirtualPool is allowed because a SnapshotPool instance is created in a VirtualPool instance.

Functional profiles, diagrams, and methods 35

Note: The Common Information Model (CIM) schema defines this input parameter to be an array of
strings that represent CIM object paths (COPs), and not actual references to objects.

Goal
The Goal parameter represents the StorageSetting instance of the pool to be created. To create a
VirtualPool instance, only the object reference IBMTSDS_VirtualPoolSetting is allowed; to create a
SnapshotPool instance, only the object reference IBMTSDS_SnapshotPoolSetting is allowed. The Goal
parameter also specifies the snapshot size value of the pool. See the BlockServer.mof file for
details.

ElementName
The ElementName property provides a means for you to set a meaningful name for the pool to be
created or modified. If specified, limit it to 63 characters which can include letters, digits, blanks, -,
_, . and ~ characters. Blanks cannot be the beginning and ending characters. If not specified during
pool creation, a random pool name is generated in the form of pool<random integer>.

Note: The name of the pool must be unique in the system. It cannot be a name that is already
assigned to one of the other pools in the system.

Size (required for creation)
As an input parameter, Size specifies the requested size of the pool. Null is not allowed for pool
creation. As an output parameter, Size specifies the size achieved.

Deleting a storage pool
The IBMTSDS_StorageConfigurationService. DeleteStoragePool method is used to delete a single storage
pool. This method requires a single parameter. Specify the reference to the Concrete StoragePool
instance that is to be deleted. Only a single StoragePool instance can be deleted at a time.

Note: You must delete all volumes in the current pool before you delete a pool, and the Primordial
StoragePool instance cannot be deleted.

Creating, modifying, and/or moving multiple volumes in a single method call
IBMTSDS_StorageConfigurationService. CreateOrModifyElementsFromStoragePool is a vendor-extension
method that allows for the creation / modification / moving of multiple volumes in a single method call.

For large numbers of volumes, this method can be more efficient than calling
CreateOrModifyElementFromStoragePool several times in a loop. The InPool, Goal, and ElementType
input parameters are the same as in CreateOrModifyElementFromStoragePool.

Parameters

The following definitions summarize the parameters that are different from
CreateOrModifyElementFromStoragePool.
TheElements (required for volume modification or volume moving)

If this value is not null, it indicates that you want to modify each of the volumes specified.
Quantity (required for volume creation)

As input, represents the number of StorageVolume instances to be created. This parameter must be
null when you modify StorageVolume instances. As output, represents the number of volumes that are
created if successful. Or, if creation was not successful because of too many volumes and not enough
capacity on the VirtualPool instance, it represents the number of volumes that can be created.

ElementNames
An array of the element names to assign to the various volumes that are being created or modified.
Volume names can be supplied in two different ways:

• The first way supplies each volume name with one element of the value. The length must be equal
to the value for Quantity when you create volumes. If not NULL, the length must be the same as the
length specified in the TheElements parameter when you modify volumes. For example, to create

36 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

two volumes 'testVolume_3' and 'testVolume_4', set the ElementNames parameter's value as
['testVolume_3','testVolume_4'] and leave the value of the FirstSuffix parameter as null.

• The second way supplies the leading string of volumes names as the only one element. In this case,
names of all volumes have the same format [LeadingString]_[IncrementingNumber].
[LeadingString] is the value of this parameter, and the first [IncrementingNumber] is the
value of the FirstSuffix parameter. The incremental number is 1. To create two volumes
'testVolume_3' and 'testVolume_4' in the first way, set the ElementNames parameter's value as
['testVolume'] and set the value of the FirstSuffix parameter as 3.

FirstSuffix
Represents the starting suffix number of volume names when you use the second way described to
create volumes or modify volume names. Users can supply the starting [IncrementingNumber]
with this parameter. If it is null, the default value is 1. When you use the first way described to create
volumes or modify volume names, the value must be null.

Note: The FirstSuffix parameter is not in the Common Information Model (CIM) or Storage
Management Initiative Specification (SMI-S) schema. This parameter is an IBM extension.

ReturnCodes
Each volume that is created or modified can have a different error that is associated with it. This
output parameter is an array of each of the individual return codes for each attempt.

Creating, modifying, and/or moving a single volume
IBMTSDS_StorageConfigurationService. CreateOrModifyElementFromStoragePool is the Common
Information Model (CIM) and Storage Management Initiative Specification (SMI-S) standard method for
creating or modifying a StorageVolume instance from a Concrete StoragePool instance.

This method can create or modify one volume at a time. This method is also used for moving a volume
from one pool to another when the InPool parameter is specified with reference of the target pool.

Parameters

The following definitions summarize how the IBMTSDS_StorageConfigurationService.
CreateOrModifyElementFromStoragePoolmethod handles different values for the input parameters:
TheElement (required for modification)

As an input parameter, if the value is null, it indicates that you want to create a volume. If the value is
not null, it indicates that you are trying to modify the specified volume. As an output parameter,
TheElement references the volume that was created or modified.

ElementType
An enumeration that indicates what type of element is being created or modified. Only volume values
are supported. So the value of ElementType is 2 (StorageVolume) or 5
(ThinlyProvisionedStorageVolume). See the BlockServer.mof file for details.

InPool (required for creation and moving)
A reference to the StoragePool instance which the volume is to be created in or moved to. It must be
an instance of IBMTSDS_VirtualPool.

Goal
A reference to the StorageSetting instance representing the DataType value of the volume. It must be
a reference to an instance of IBMTSDS_DataTypeSetting. IBMTSDS_DataTypeSetting has two
instances: IBMTSDS:SystemBlockSize and IBMTSDS:XIVBlockSize. In volume creation, if this
parameter is null, the default value IBMTSDS:XIVBlockSize is used. In volume modification, if the Size
parameter is specified, but this parameter is null, the default value IBMTSDS:XIVBlockSize is used,
and the volume is resized.

Size
In creating or modifying a volume, this parameter specifies the wanted size (as input) and the size
achieved (as an output parameter). In modifying the size of a volume, only size expansion is supported
by default. If you want to shrink a volume, set the ForceShrink parameter as true.

Functional profiles, diagrams, and methods 37

ForceShrink
In modifying a volume, this parameter specifies a volume is shrunk if the Size parameter is smaller
than the actual size of the volume. If this parameter is null or set to false, shrinking a volume fails. To
shrink a volume, set this parameter to true. The default value is false.

Attention: Shrinking a volume can cause data loss.

The ForceShrink parameter is not in the CIM or SMI-S schema. This parameter is an IBM extension.
Locked

In modifying a volume/snapshot, this parameter specifies the volume/snapshot locking status to be
locked or unlocked. If this parameter is null, the volume/snapshot locking status is not modified. If
this parameter is set to 0, the volume/snapshot is unlocked. If this parameter is set to 1, the volume/
snapshot is locked. Other values are invalid. When a volume/snapshot is locked, and other properties
are modified in the same method, the volume/snapshot is locked in the last step. When a volume/
snapshot is unlocked and other properties are modified in the same method, the volume/snapshot is
unlocked in the first step.

Note: The Locked parameter is not in the CIM or SMI-S schema. This parameter is an IBM extension.

ElementName
A descriptive name to assign to the volume.

Note: The volume name must be unique in the system. It cannot be a name that is already assigned
to one of the other volumes in the system.

Deleting a single volume
The IBMTSDS_StorageConfigurationService. ReturnToStoragePool method is used to delete a single
volume. The only input parameter that is required is a reference to the volume that you want to delete.
Only one volume can be deleted at a time.

Deleting multiple volumes concurrently
The IBMTSDS_StorageConfigurationService. ReturnElementsToStoragePool method is used to delete
multiple volumes concurrently. You can pass in an array of references of volumes to delete.

There is a ReturnCodes output parameter for the errors that can be generated for each individual volume
that is being deleted.

Note: The ReturnElementsToStoragePool method is not in the Common Information Model (CIM) or
Storage Management Initiative Specification (SMI-S) schema. This method is an IBM extension.

Determining sizes to use to create elements from the primordial storage pool
The IBMTSDS_PrimordialStoragePool. GetSupportedSizeRange method is used to find out what sizes to
use to create elements from the primordial storage pool.

CIM_StoragePool includes the standard methods GetSupportedSizes and GetSupportedSizeRange to
perform this task, but for IBMTSDS_PrimordialStoragePool, only GetSupportedSizeRange is supported. It
can be used to retrieve the supported physical size of a virtual pool which can be created. The Goal input
parameter represents the pool data type to use to calculate the possible valid sizes. It returns a range and
a divisor of valid sizes.

Note: If there is no spare space to create a minimum pool, the returned minimum and maximum size of
GetSupportedSizeRange for the storage pool is zero.

38 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Determining sizes to use to create elements from the virtual storage pool
The IBMTSDS_VirtualPool.GetSupportedSizeRange method is used to find out what sizes to use to create
elements from the virtual storage pool.

This method can be used to retrieve the supported size of virtual pool which can be created. The Goal
input parameter represents the pool data type used to calculate the possible valid sizes. It returns a range
and a divisor of valid sizes.

Note: If there is no spare space to create a minimum pool, the returned minimum and maximum size of
GetSupportedSizeRange for the storage pool is zero.

Creating a concrete storage pool
You can use the CreateOrModifyStoragePool method to create a Concrete StoragePool instance.

1. Call IBMTSDS_PrimordialStoragePool.GetSupportedSizeRange with ElementType set to StoragePool. If
the return code is 0 (success), present these values to the user and allow the user to pick a size.

2. Use InvokeMethod on IBMTSDS_StorageConfigurationService.CreateOrModifyStoragePool and specify
the ElementName, Size, and Goal input parameters.

3. Save the pool output parameter. It is the reference to the VirtualPool instance that was created.

Creating a storage volume
You can use the CreateOrModifyElementFromStoragePool method to create a StorageVolume instance.

1. Use the associatorNames parameter from the Concrete StoragePool instance that was created to
CIM_StorageCapabilities to get a matching instance of IBMTSDS_VirtualPoolCapabilities.

2. Use the associatorNames parameter from the IBMTSDS_VirtualPoolCapabilities instance to
CIM_StorageSetting to get valid instances of IBMTSDS_DataTypeSetting and allow user to pick the
data type to use to create the volume.

3. Call IBMTSDS_VirtualPool.GetSupportedSizeRange on the virtual pool that is created in Step 1 using
the data type that the user picked as the Goal input parameter. If the return code is 0 (success),
present these values to the user and allow the user to pick a size.

4. Use InvokeMethod on IBMTSDS_StorageConfigurationService.
CreateOrModifyElementFromStoragePool. Use the IBMTSDS_VirtualPool instance created in Step 1,
the IBMTSDS_DataTypeSetting value, Size value, and ElementName value specified as the InPools,
Size, Goal, and ElementName input parameters.

5. Save the TheElement output parameter and display it to the user, informing the user know that is the
instance of the volume that was created.

iSCSI Target Ports profile
The iSCSI Target Ports subprofile provides a standard model for representing iSCSI elements as Common
Information Model (CIM) objects.

A client can obtain information about iSCSI capabilities and settings of an IBM FlashSystem A9000 and
A9000R storage array. A client can also obtain information that is provided by iSCSI-capable arrays and
the storage volumes that are exposed by those arrays on an iSCSI network:

• Nodes
• Network Portals
• SCSI Ports

iSCSI sessions and settings are not currently configurable through the IBM FlashSystem A9000 and
A9000R Storage Management Initiative Specification (SMI-S) provider.

Functional profiles, diagrams, and methods 39

iSCSI Target Ports Object Model
The Common Information Model (CIM) agent is designed to allow for the retrieval of information for each
layer of abstraction.

See Figure 6 on page 40 for the iSCSI Target Ports Storage Management Initiative Specification (SMI-S)
model for IBM FlashSystem A9000 and A9000R systems.

Figure 6: iSCSI Target Ports SMI-S model for IBM FlashSystem A9000 and A9000R systems

The following table provides a map of terminology from iSCSI standards and CIM class names on the
previous UML diagram. iSCSI Session, Connection, and Portal Group are not supported by IBM
FlashSystem A9000 and A9000R SMI-S.

40 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 23: iSCSI terminology and CIM class names

iSCSI term CIM class name Description

Network entity ComputerSystem The Network Entity represents a
device that is accessible from the
IP network. A Network Entity has
one or more Network Portals.
Each Network Portal can be used
to gain access to the IP network
by some iSCSI Nodes that are
contained in that Network Entity.

Node SCSIProtocolController The iSCSI Node represents a
single iSCSI Target. There are one
or more iSCSI Nodes within a
Network Entity. The iSCSI Node is
accessible through one or more
Network Portals. An iSCSI Node
is identified by its iSCSI Name.
Separating the iSCSI Name from
the addresses allows multiple
iSCSI nodes to use the same
address, and the same iSCSI
node to use multiple addresses.

SCSI port iSCSIProtocolEndpoint A SCSI Port with an iSCSI service
delivery subsystem. A collection
of Network Portals that together
acts as a SCSI Target or target.

Network Portal TCPProtocolEndpoint,
IPProtocolEndpoint, EthernetPort

A component of a Network Entity
that has a TCP/IP network
address. It might be used by an
iSCSI Node within that Network
Entity for the connections within
one of its iSCSI sessions. A
Network Portal in a Target is
identified by its IP address.

Network entities
Each IBMTSDS_StorageSystem instance is considered a separate network entity, associated to an
instance of CIM_iSCSICapabilities through the CIM_ElementCapabilities association; it is an iSCSI
network entity visible on an iSCSI network.
Instances of CIM_iSCSICapabilities contain the iSCSI specification versions and the authentication
mechanisms that are supported by a network entity, which can be used to determine the capabilities
of a storage array.

iSCSI nodes
iSCSI Node instances are represented by instances of CIM_SCSIProtocolController. This class can
have many subclasses. The Name and NameFormat properties can be used to determine whether a
CIM_SCSIProtocolController instance is an iSCSI Node instance.
All CIM_SCSIProtocolController instances that represent iSCSI Node instances are required to have a
Name property whose value is an iSCSI Name value. Therefore, the NameFormat property must have
a value of 3 (which maps to iSCSI Name).
On the IBM FlashSystem A9000 and A9000R arrays, iSCSI Node instances are represented by
instances of IBMTSDS_iSCSIProtocolController. IBMTSDS_iSCSIProtocolController is a subclass of
CIM_SCSIProtocolController, which is associated to the first-level system (IBMTSDS_StorageSystem)
through CIM_SystemDevice.

Functional profiles, diagrams, and methods 41

For IBM FlashSystem A9000 and A9000R arrays, each IBMTSDS_StorageSystem entry has one Node
entry for each IP Interface parameter. The iSCSI Name values for those nodes follow the IQN (iSCSI
qualified name) format. The NameFormat and Name properties of the
IBMTSDS_iSCSIProtocolController instances are shown bolded in the following example.

instance of IBMTSDS_iSCSIProtocolController { SystemCreationClassName =
"IBMTSDS_StorageSystem"; SystemName = "IBM.2810-6000095";
CreationClassName = "IBMTSDS_iSCSIProtocolController"; Name =
"iqn.2005-10.com.xivstorage:000095.M_7_1"; NameFormat = 3; ElementName =
"M_7_1"; DeviceID = "IBM.2810-6000095-100955"; Caption =
"iSCSI Node of IP Interface M_7_1"; HealthState = 0; };

iSCSI ports
Each iSCSI Node instance on an IBM FlashSystem A9000 and A9000R array is accessed through a
single CIM_iSCSIProtocolEndpoint instance. The CIM_iSCSIProtocolEndpoint instances can be
discovered by finding all iSCSI nodes, then following the CIM_SAPAvailableForElement association
from the iSCSI node (IBMTSDS_iSCSIProtocolController) to CIM_iSCSIProtocolEndpoint.
To find all of the CIM_iSCSIProtocolEndpoint instances for a network entity, follow the
CIM_HostedAccessPoint association from the IBMTSDS_StorageSystem instance to the
CIM_iSCSIProtocolEndpoint instances.

Network Portal
There is a single network portal per IP Interface on an IBM FlashSystem A9000 and A9000R array,
just as there is one iSCSI node and iSCSI port per IP Interface.
Network portals are represented by using the CIM_TCPProtocolEndpoint, CIM_IPProtocolEndpoint
and CIM_EthernetPort classes, which are associated through the CIM_BindsTo association:

• The CIM_IPProtocolEndpoint instance contains the IP address of the network portal in the
IPv4Address property. The IPv6Address property is not currently supported.

• The CIM_TCPProtocolEndpoint instance contains the TCP Port of the Network Portal in the
PortNumber property.

• The CIM_EthernetPort instance contains the physical properties of the Network Portal in the
PermanentAddress, DeviceID, FullDuplex, Speed, and OtherIdentifyingInfo properties.

iSCSI Target Ports methods
The following sections describe functional methods associated with the iSCSI Target Ports profile and
object model, including uses of and parameters used by each method.

• “Creating an IP endpoint” on page 42
• “Modifying an IP endpoint” on page 43
• “Deleting an IP endpoint” on page 44

Creating an IP endpoint
You can use IBMTSDS_iSCSIConfigurationService.CreateIPProtocolEndpoint method to create an IP
endpoint.

1. Obtain the reference (CIMObjectPath) of an IBMTSDS_iSCSIConfigurationService instance. The
instance is associated with the IBMTSDS_StorageSystem instance in which you receive the
performance statistics by traversing the IBMTSDS_HostediSCSIConfigurationService association.

2. Invoke the IBMTSDS_iSCSIConfigurationService.CreateIPProtocolEndpoint method to create an IP
endpoint with specified values of parameters ElementName, ModuleNumber, PortNumber,
IPv4Address, IPv4Gateway, IPv4SubnetMask, and MTU.

3. After it is successfully completed, check the value of IPEndpoint representing the IP endpoint that was
created.

42 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Parameters
The following list describes the parameters of the
IBMTSDS_iSCSIConfigurationService.CreateIPProtocolEndpoint method.

ElementName (required)
A meaningful name for the IP endpoint. It cannot be empty or null.

ModuleNumber (required)
An identifier that indicates the module that contains the IP endpoint. It cannot be 0 or null.

PortNumber (required)
Port identifier for this IP endpoint on this module. The value cannot be a value other than 1, 2, 3, or 4
because each module has four ports.

IPv4Address (required)
IPv4 address for this port.

IPv4Gateway (required)
IPv4 gateway for this port.

IPv4SubnetMask (required)
IPv4 subnet mask for this port.

MTU
MTU for this port. If it is null, default value 4500 is used.

IPEndpoint
The reference to a point that was created.

Modifying an IP endpoint
You can use IBMTSDS_iSCSIConfigurationService.ModifyIPProtocolEndpoint method to create an IP
endpoint.

1. Obtain the reference (CIMObjectPath) of an IBMTSDS_iSCSIConfigurationService instance that is
associated with the IBMTSDS_StorageSystem instance in which you receive the performance statistics
by traversing the IBMTSDS_HostediSCSIConfigurationService association.

2. Obtain the reference (CIMObjectPath) of an IBMTSDS_IPEndPoint instance which is to be modified.
3. Invoke the IBMTSDS_iSCSIConfigurationService.ModifyIPProtocolEndpoint method to modify an IP

endpoint with values of parameters ElementName, IPv4Address, IPv4Gateway, IPv4SubnetMask,
MTU, and IPEndpoint.

4. After it is successfully completed, the IP endpoint will be modified.

Parameters
The following list describes the parameters of the
IBMTSDS_iSCSIConfigurationService.ModifyIPProtocolEndpoint method.

Note: The method ModifyIPProtocolEndpoint is not in the Common Information Model (CIM)/Storage
Management Initiative Specification (SMI-S) schema but an IBM extension.

ElementName
A new meaningful name for the IP endpoint.

ModuleNumber
An identifier that indicates the new module that contains the IP endpoint.

PortNumber
The new port identifier for this IP endpoint. If it is set, the value cannot be a value other than 1, 2, 3,
or 4 because each module has four ports.

IPv4Address
A new IPv4 address for this port.

IPv4Gateway
A new IPv4 gateway for this port.

Functional profiles, diagrams, and methods 43

IPv4SubnetMask
A new IPv4 subnet mask for this port.

MTU
A new MTU for this port.

IPEndpoint
The reference to a point to modify.

Deleting an IP endpoint
You can use the IBMTSDS_iSCSIConfigurationService. DeleteIPProtocolEndpoint method to delete an IP
endpoint.

1. Obtain the reference (CIMObjectPath) of an IBMTSDS_iSCSIConfigurationService instance. Ensure that
the reference is associated with the IBMTSDS_StorageSystem instance in which you receive the
performance statistics by traversing the IBMTSDS_HostediSCSIConfigurationService association.

2. Obtain the reference (CIMObjectPath) of an IBMTSDS_IPEndPoint instance which is to be deleted.
3. Invoke the IBMTSDS_iSCSIConfigurationService.DeleteIPProtocolEndpoint method and set

IPEndpoint as the reference obtained in step 2.
4. After it is successfully completed, the IP endpoint is deleted.

Parameters
The only input parameter that is required for the IBMTSDS_iSCSIConfigurationService.
DeleteIPProtocolEndpoint method is a reference to the PortocolEndPoint instance that you want to
delete. Only one PortocolEndPoint instance can be deleted at a time.

Note: The method DeleteIPProtocolEndpoint is not in the Common Information Model (CIM)/Storage
Management Initiative Specification (SMI-S) schema but an IBM extension.

Masking and Mapping profile
You can control which client hosts can see and access storage volumes by mapping and masking client
hosts. The Storage Networking Industry Association (SNIA) Storage Management Initiative Specification
(SMI-S) specifications define the Mapping and Masking profile to support this function.
LUN masking

The process of configuring software in SAN nodes to determine which hosts have access to exported
drives (volumes).
LUN masking for IBM FlashSystem A9000 and A9000R systems is storage-based port mapping.

LUN mapping
The process of creating a disk resource and defining its external access paths by using a LUN. The LUN
is then mapped to an external ID descriptor. For example, a SCSI port or a target ID. To ensure
uninterrupted data availability, map a logical volume to allow access from multiple ports, target IDs or
both.

The IBM FlashSystem A9000 and A9000R system architecture for masking and mapping involves the
following objects on two kinds of devices:

• Objects on IBM FlashSystem A9000 and A9000R systems:

– Storage device I/O ports (FC ports and iSCSI ports)
– Storage volumes

• Objects on the host system

– Host ports (HBAs)
– Hosts (host systems)
– Clusters

44 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Figure 7 on page 45 provides an example of how IBM FlashSystem A9000 and A9000R systems use
masking and mapping.

Figure 7: Masking and mapping physical model in IBM FlashSystem A9000 and A9000R systems

The following list defines each of the objects that are shown in Figure 7 on page 45.

Storage device I/O ports
Ports on IBM FlashSystem A9000 and A9000R systems that represent a Fibre Channel port or an
iSCSI port that is used for host I/O operations. Storage device I/O ports are sometimes referred to as
target ports.

Volumes
Objects on IBM FlashSystem A9000 and A9000R systems that are mapped to host or a cluster. One
volume cannot be mapped to multiple hosts that are not part of the same cluster.

Host ports
Objects that represent a single Fibre Channel port or an iSCSI port on the host system. The
architecture does not track host systems. If a host system has multiple host ports, a host port object
must be created for each port.

Hosts
Systems with a set of initiator ports that are used to access storage on the device. For each host
system, you can create a host object, add host port objects, and then map the host to volumes
through the IBM Hyper-Scale Manager GUI, command-line interface (CLI), or Common Information
Model (CIM) agent.

Clusters
Groups of hosts. For IBM FlashSystem A9000 and A9000R systems, multiple hosts can see the same
set of volumes. For a host system cluster, you can create a cluster object, add host objects to it, and
then map the cluster object to multiple volumes through the IBM Hyper-Scale Manager GUI, CLI, or
CIM agent. Clusters are required when more than one host can access the same volume.

After you set up the physical network and create a host object, add Fibre Channel ports or iSCSI ports to
the host. Map the volumes to the host so that the volume can be used for I/O operations.

Mapping hosts to a volume

You can map a host to volumes. A host can contain several initiator ports that include Fibre Channel ports
and iSCSI ports. In this case, create a host, add the initiator ports, and then map the host to a volume.

Functional profiles, diagrams, and methods 45

Through this mapping, the host system is able to access the mapped volume through the included
initiator ports.

Mapping clusters to a volume

You can map a cluster to a volume when several hosts must be mapped to the same volume. In this case,
create a cluster and add hosts, and then map the cluster to volumes. Through this mapping, the volume is
mapped to all hosts that are contained in the cluster. If a host is included in a cluster, it cannot be mapped
to another volume separately.

See the IBM FlashSystem A9000 and A9000R: Architecture, Implementation, and Usage and the IBM
FlashSystem A9000 Product Overview or IBM FlashSystem A9000R Product Overview for more information
about the architecture of IBM FlashSystem A9000 and A9000R systems.

Masking and Mapping object model
The Masking and Mapping profile provides an interface to specify which hosts can see which volumes and
through which target ports.

For IBM FlashSystem A9000 and A9000R host and cluster mappings, specifying target ports for the view
is not supported. Target ports cannot be selected when you configure host mappings, but can be
configured by zoning configurations on the switch. The target ports that are involved in all views can be
displayed by enumerating the instances of CIM_ProtocolControllerForPort class. See Figure 8 on page
46.

Figure 8: Masking and mapping object model in SMI-S

Table 24 on page 46 describes the masking and mapping classes that are available. For more
information about the masking and mapping object model, see the MaskingMapping.mof file. The MOF
documentation is in the mof folder in the Common Information Model (CIM) agent installation directory.

Table 24: Masking and mapping classes

CIM class name Description
IBM FlashSystem A9000 and
A9000R CIM class name

CIM_FCPort A Fibre Channel port on the system IBMTSDS_FCPort

CIM_EthernetPort An Ethernet port on the system IBMTSDS_EthernetPort

46 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 24: Masking and mapping classes (continued)

CIM class name Description
IBM FlashSystem A9000 and
A9000R CIM class name

CIM_SCSIProtocolEndPoint The Fibre Channel or iSCSI port
that is used in the mapping

IBMTSDS_SCSIProtocolEndpoint

IBMTSDS_iSCSIProtocolEndpoint

CIM_SCSIProtocolController A logical entity that represents a
host and the relationship to the
volumes

IBMTSDS_SCSIProtocolController

CIM_StorageVolume A storage volume on the system IBMTSDS_SEVolume

CIM_AuthorizedPrivilege A logical entity that represents the
access permissions for a set of
volumes

IBMTSDS_Privilege

CIM_StorageHardwareID An initiator port on the host system IBMTSDS_StorageHardwareID

CIM_SystemSpecificCollection A logical entity which represents a
collection of StorageHardwareID
(host)

IBMTSDS_SystemSpecificCollectio
n

CIM_Cluster A logical entity which represents a
collection of
SystemSpecificCollection (hosts)

IBMTSDS_Cluster

The IBM FlashSystem A9000 and A9000R CIM agent provides a full implementation of masking and
mapping subprofile including the following items:

• iSCSI port support
• StorageHardwareID instance creation and deletion
• HardwareIDCollection instance creation and modification
• ExposePaths and HidePaths methods

iSCSI port support

By default, IBM FlashSystem A9000 and A9000R ships equipped with six iSCSI ports. Three of the
interface modules support iSCSI, with two ports in each module. You can refer to IBM FlashSystem
A9000 and A9000R Redbook for detailed information. The IBM FlashSystem A9000 and A9000R CIM
agent include the full iSCSI support by implementation of the iSCSI target ports profile and the masking
and mapping profile.

StorageHardwareID instance manipulation

A StorageHardwareID instance represents the host-side initiator that logs in to a storage area network.
The IBM FlashSystem A9000 and A9000R SMI-S provider supports host-side initiators that contain Fibre
Channel or iSCSI host ports.

A StorageHardwareIDMangementService instance allows a CIM client to locate StorageHardwareID
instances known to a storage array, and create, modify, and delete them.

• The CreateStorageHardwareID method creates a StorageHardwareID instance. On IBM FlashSystem
A9000 and A9000R, a host is created which contains the specified initiator port.

• The DeleteStorageHardwareID method deletes a StorageHardwareID instance. On IBM FlashSystem
A9000 and A9000R, the initiator port is removed from the host that contains it.

Functional profiles, diagrams, and methods 47

HardwareIDCollection instance manipulation

A HardwareIDCollection instance represents a collection of StorageHardwareID instances (host-side
initiators) that log in to a storage area network.

A StorageHardwareIDMangementService instance allows a CIM client to locate HardwareIDCollection
instances known to a storage array, create a HardwareIDCollection instance, and remove HardwareID
instances from a HardwareIDCollection instance.

• The CreateHardwareIDCollection method creates a HardwareIDCollection instance with specified
ElementName and Setting values.

• The AddHardwareIDsToCollection method adds StorageHardwareID instances to a
HardwareIDCollection instance.

Note: The methods ModifyHardwareIDCollection, DeleteHardwareIDCollection, and
RemoveHardwareIDsFromCollection are not in the CIM or SMI-S schema. These methods are an IBM
extension.

ExposePaths and HidePaths methods

An SCSIProtocolController instance represents a view of volumes that can be assigned access to a
StorageHardwareID instance. You can use the ControllerConfigurationService method to locate
SCSIProtocolController instances or the ExposePaths and HidePaths methods from StorageHardwareID
instances to locate SCSIProtocolController instances.

A privilege determines the access rights between the StorageHardwareID instance and the
SCSIProtocolController instance. The IBM FlashSystem A9000 and A9000R SMI-S provider supports
read/write access. A privilege can be located by using the PrivilegeManagementService method.

Masking and Mapping methods
The following sections describe functional methods associated with the Masking and Mapping profile and
object model, including uses of and parameters used by each method.

• “Creating a storage hardware ID” on page 48
• “Deleting a storage hardware ID” on page 49
• “Creating a hardware ID collection” on page 49
• “Adding hardware IDs to a collection” on page 49
• “Assigning volumes to a storage hardware ID” on page 50
• “Deleting multiple volumes concurrently” on page 38
• “Removing access to volumes from a storage hardware ID” on page 51
• “Deleting an existing protocol controller” on page 51
• “Example configuration procedures using the Masking and Mapping profile” on page 52

Creating a storage hardware ID
You can use the CreateStorageHardwareID method to create a StorageHardwareID instance. This method
creates a host in the IBM FlashSystem A9000 or IBM FlashSystem A9000R device that contains the
initiator port that is specified by StorageID value.

Parameters

The following list describes the parameters of the CreateStorageHardwareID method.

Setting
An input parameter that represents the operating system of the port. It must be an instance of
IBMTSDS_StorageClientSettingData. Each instance represents a different operating system. Only the
values Standard, HPUX, and z/VM are supported by the IBM FlashSystem A9000 and A9000R
Common Information Model (CIM) agent. If it is left null, Standard is used by default.

48 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

IDType
An input parameter that represents the type of port. To create a HardwareID instance representing a
Fibre Channel port, specify 2; to create a HardwareID instance representing an iSCSI port, specify 5.

StorageID
An input parameter that represents the ID of the port. If the IDType value is 2, specify it as the port's
WWN; if the IDType value is 5, specify it as the port's IQN.

HardwareID
An output parameter; the reference to the created StorageHardwareID instance.

Deleting a storage hardware ID
Use the DeleteStorageHardwareID method to delete StorageHardwareID instances.

Parameters

The following list describes the parameters of the DeleteStorageHardwareID method.

HardwareID
An input parameter that represents a reference to the StorageHardwareID instance to delete.

Creating a hardware ID collection
You can use the CreateHardwareIDCollection method to create HardwareIDCollection instances.

Parameters

The following list describes the parameters of the CreateHardwareIDCollection method.

ElementName (required)
An input parameter that represents a meaningful name for the HardwareIDCollection instance that is
being created. The ElementName must be unique in the system. It cannot be a name that is already
assigned to one of the other HardwareIDCollection instances in the system. If not specified, the
Common Information Model (CIM) generates a random name.

HardwareIDs
An input parameter that represents the ID of the ports that are contained by the
HardwareIDCollection instance. If specified, each ID must be the WWN of a Fibre Channel port or the
IQN of an iSCSI port. If not specified, an empty HardwareIDCollection instance is created.

HardwareIDCollection
An output parameter that represents the reference to the created HardwareIDCollection instance.

Adding hardware IDs to a collection
You can use the AddHardwareIDsToCollection method to add StorageHardwareID instances (representing
initiator ports) into a SystemSpecificCollection instance (representing a host). The operation fails if the
port already belongs to another host. The operation succeeds if the port already belongs to the specified
host, but it has no effect.

Parameters

The following list describes the parameters of the AddHardwareIDsToCollection method.

HardwareIDs (required)
An input parameter that represents an array of strings that contain StorageID values of
StorageHardwareID instances that become members of the HardwareIDCollection instance.

HardwareIDCollection (required)
An input parameter that represents the reference to the SystemSpecificCollection instance into which
the HardwareID values are added.

Functional profiles, diagrams, and methods 49

Assigning volumes to a storage hardware ID
Use the IBMTSDS_ControllerConfigurationService. ExposePaths method to assign volumes to a
StorageHardwareID instance representing a host or cluster in an IBM FlashSystem A9000 or IBM
FlashSystem A9000R system.

ExposePaths initiates the mapping and masking operation in one method call. It produces a list of
volumes to a list of initiators, through one or more SCSIProtocolController instances (SPCs). It supports
creating or modifying SPCs depending on different specified parameters.

The following table gives an overview of ExposePaths use cases and associated parameters and
parameter values.

Table 25: ExposePaths use cases, parameters, and parameter values

Use cases LUNames
Initiator
PortIDs

Target
PortIDs

Device
Numbers

Device
Accesses

ProtocolControllers
(on input)

Create a
view

Optional Optional NULL Optional Optional NULL

Add LUNs
to a view

Mandatory NULL Optional Optional contains a single SPC
reference

Add
initiator IDs
to a view

NULL Mandatory NULL NULL NULL contains a single SPC
reference

Parameters (detailed)

The following list describes the parameters of the IBMTSDS_ControllerConfigurationService. ExposePaths
method in more detail.

LUNames (required)
A string array input parameter that represents the volumes to map to the SPC. They are not references
to volume instances, but strings that match the Name property of the IBMTSDS_SEVolume
(CIM_StorageVolume) instance, which is the WWN of an IBM FlashSystem A9000 or IBM FlashSystem
A9000R volume.

InitiatorPortIDs (required if StorageHardwareID has no volumes previously mapped)
A string array input parameter that represents the initiator ports to be added to an SPC. They are not
references to StorageHardwareID instances, but the StorageID property of
IBMTSDS_StorageHardwareID instance.

DeviceNumbers (required)
A string array input parameter that represents the LUN IDs. Each item in this array must be a number
0 - 511. The number of items is the same as the number of items that are specified by the LUNames
parameter. If not specified, the Common Information Model (CIM) assigns unused LUN IDs for the
operation.

DeviceAccesses
A unit16 array input parameter that represents the access rights to give to the StorageHardwareID
instance and to the volumes specified in LUNames. Read/write access is supported. It must be an
array the same size as that specified for LUNames, where each value is 2.

ProtocolControllers (required if adding volumes to a StorageHardwareID that was already previously
mapped to volumes)

As an input parameter, it represents the SCSIProtocolController instance to be modified. As an output
parameter, it represents the SCSIProtocolController instance that is being modified or created.

50 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Removing access to volumes from a storage hardware ID
The IBMTSDS_ControllerConfigurationService. HidePaths method is the inverse of the ExposePaths
method; it is used to remove access to volumes from a StorageHardwareID instance.

The following table gives an overview of HidePaths use cases and associated parameters and parameter
values.

Table 26: HidePaths use cases, parameters, and parameter values

Use case LUNames InitiatorPortIDs TargetPortIDs ProtocolControllers (on input)

Remove LUs from a view Mandatory NULL NULL contains a single SPC reference

Remove initiator IDs
from a view

NULL Mandatory NULL contains a single SPC reference

Hide full paths from a
view

Mandatory Mandatory NULL contains a single SPC reference

Parameters (detailed)

The following list describes the parameters of the IBMTSDS_ControllerConfigurationService. HidePaths
method in more detail.

LUNames (required for removing access to volumes)
A string array input parameter that represents the volumes to unmap from the StorageHardwareID
instance. They are not references to volume instances, but are strings that match the Name property
of the IBMTSDS_SEVolume (CIM_StorageVolume) instance.

InitiatorPortIDs (required for removing access to initiator ports)
A string array input parameter that represents the initiator port that you want to remove from the
SCSIProtocolController view.

ProtocolControllers (required)
As an input parameter, it represents the SCSIProtocolController instance to be modified. As an output
parameter, it represents the SCSIProtocolController instance that was modified or deleted.

Deleting an existing protocol controller
The IBMTSDS_ControllerConfigurationService. DeleteProtocolController method deletes an existing
ProtocolController. In IBM FlashSystem A9000 and A9000R systems, the corresponding host and all the
host ports that are contained by the host are deleted.

Parameters

The following list describes the parameters of the IBMTSDS_ControllerConfigurationService.
DeleteProtocolController method.

ProtocolController (required)
An input parameter that represents the ProtocolController instance to be deleted.

DeleteUnits
An input parameter that represents the requirement to delete the volumes that are mapped to the
ProtocolController instance. If true is specified, the mapped volumes are deleted.

Functional profiles, diagrams, and methods 51

Example configuration procedures using the Masking and Mapping profile
The following sections provide example procedures to perform various configuration tasks using the
Masking and Mapping profile, including the common tasks of configuring host and LUN mapping in an IBM
FlashSystem A9000 or IBM FlashSystem A9000R system.

Mapping FC and iSCSI ports to volumes (example):

1. Obtain the WWN of the host FC ports, the IQN of the host iSCSI ports, and the names of the volumes to
be mapped to.

2. Use InvokeMethod on IBMTSDS_ControllerConfigurationService.ExposePaths, with InitiatorPortIDs set
to the IDs of the host ports, LUNames set to the volume names, and DeviceAccesses set to 2.

Adding volumes to an existing SCSI protocol controller (SPC) (example):

1. Obtain the host reference and the names of the volumes to be added.
2. Find the IBMTSDS_SCSIProtocolController instance that matches the selected host.
3. Use InvokeMethod on IBMTSDS_ControllerConfigurationService.ExposePaths, with LUNames set to

the volume names, DeviceAccesses set to 2, and ProtocolControllers set to the SCSIProtocolController
instance name.

Adding initiator ports to an existing SPC (example):

1. Obtain the IDs of the initiator ports.
2. Find the IBMTSDS_SCSIProtocolController instance.
3. Use InvokeMethod on IBMTSDS_ControllerConfigurationService.ExposePaths, with InitiatorPortIDs set

to the initiator port IDs, DeviceAccesses set to 2, and ProtocolControllers set to the
SCSIProtocolController instance name.

Removing volumes from an SPC (example):

1. Obtain the SPC reference and names of the volumes to be removed.
2. Find the IBMTSDS_SCSIProtocolController instance that matches the selected host.
3. Use InvokeMethod on IBMTSDS_ControllerConfigurationService.HidePaths, with LUNames set to the

volume names and ProtocolControllers set to the SCSIProtocolController instance name.

Removing initiator ports from an SPC (example):

1. Obtain the SPC reference and IDs of the initiator port.
2. Find the IBMTSDS_SCSIProtocolController instance.
3. Use InvokeMethod on IBMTSDS_ControllerConfigurationService.HidePaths, with InitiatorPortIDs set to

the IDs of the initiator ports and ProtocolControllers set to the SCSIProtocolController instance name.

Indication profile
The Storage Management Initiative Specification (SMI-S) supports two types of indications: Lifecycle
indications and alert indications.

Lifecycle indications are used to convey changes in the model and are concerned only with the creation,
modification, or deletion of Common Information Model (CIM) instances. Alert indications are used to
draw the attention of subscribing client applications to the occurrence of an event. Lifecycle indications
are implemented in all IBM FlashSystem A9000 and A9000R CIM agent releases.

Supported lifecycle indications by class

Table 27 on page 53 identifies the class of objects that can be monitored by using the specified
indication type for IBM FlashSystem A9000 and A9000R arrays.

52 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 27: Indication types and object classes

Class name Supported lifecycle indications

IBMTSDS_SEVolume IBMTSDS_InstCreation

IBMTSDS_InstDeletion

IBMTSDS_InstModification

IBMTSDS_VirtualPool IBMTSDS_InstCreation

IBMTSDS_InstDeletion

IBMTSDS_InstModification

IBMTSDS_ProtocolControllerForSEUnit IBMTSDS_InstCreation

IBMTSDS_InstDeletion

IBMTSDS_SCSIProtocolController IBMTSDS_InstCreation

IBMTSDS_InstDeletion

IBMTSDS_SystemSpecificCollection IBMTSDS_InstCreation

IBMTSDS_InstDeletion

IBMTSDS_StorageHardwareID IBMTSDS_InstCreation

IBMTSDS_InstDeletion

IBMTSDS_iSCSIProtocolEndpoint IBMTSDS_InstCreation

IBMTSDS_InstDeletion

The lifecycle indications are sent following an IBM FlashSystem A9000 or IBM FlashSystem A9000R CIM
agent configuration function being successfully completed. If the SMI-S client starts the CIM agent
ExposePaths method to map a volume to a host, a related InstCreation indication with the new
IBMTSDS_ProtocolControllerForSEUnit instance is sent from the provider.

In addition, the CIM agent periodically fetches events and sends related lifecycle indications. If a
StorageVolume instance is created on an array through the IBM FlashSystem A9000 or IBM FlashSystem
A9000R GUI, an SMI-S client receives a related InstCreation indication with the new IBMTSDS_SEVolume
instance from the provider. By default, the IBM FlashSystem A9000 and A9000R event fetch interval is 30
seconds.

Alert indications

The IBM FlashSystem A9000 and A9000R CIM agent periodically fetches non-internal events and sends
one alert indication for each event. The alert indication comes in the form of class
IBMTSDS_AlertIndication. By default, the IBM FlashSystem A9000 and A9000R events fetching interval
is 30 seconds.

Functional profiles, diagrams, and methods 53

Note: The IBM FlashSystem A9000 and A9000R CIM agent has a limitation of values of properties:

• IndicationTime of IBMTSDS_InstCreation class
• IndicationTime of IBMTSDS_InstDeletion class
• IndicationTime of IBMTSDS_InstModification class
• EventTime of IBMTSDS_AlertIndication class
• IndicationTime of IBMTSDS_AlertIndication class

The above properties are representing a timestamp in format yyyymmddhhmmss.mmmmmmsutc, where:

• yyyy is the four-digit year
• mm is the month within the year (starting with 01)
• dd is the day within the month (starting with 01)
• hh is the hour within the day (24-hour clock, starting with 00)
• mm is the minute within the hour (starting with 00)
• ss is the second within the minute (starting with 00)
• mmmmmm is the microsecond within the second (starting with 000000)
• s is a "+" or "-", indicating that the value is a timestamp, and indicating the sign of the UTC (Universal

Coordinated Time) correction field. A "+" is used for time zones east of Greenwich, and a "-" is used for
time zones west of Greenwich.

• utc is the offset from UTC in minutes (using the sign indicated by s)

Fields other than utc are correct which are representing the UTC timestamp and the utc field as 000.
Occasionally the utc property has values other than 000 (such as 540). Values other than 000 are be
ignored.

Replication Services profile
The Replication Services profile allows a storage system to copy data from a source element to a target
element. The copy operations can be initiated on elements from the same storage system or across a
connection to a different storage system.

Elements that are used in a copy operation can be grouped to facilitate the copy operation on many
elements at the same time. Furthermore, the elements of a group can be declared as consistent.

Two types of synchronization views are supported. A target element can be synchronized to the current
view of the source element, or it can be synchronized to a point-in-time view. Snapshots and clones
represent a point-in-time view, while a mirror represents a current view.

Two copy modes are supported: synchronous and asynchronous. In synchronous mode, the writer waits
for acknowledgment that a write to the source element was processed by the target element. Until it
receives this acknowledgment, it does not accept another I/O from the host.

In asynchronous mode, the writer does not wait for this acknowledgment and continues processing I/Os,
enabling writes to be sent to the target element later.

The Replication Services profile supports local and remote replication. Local replication specifies that
both the source elements and the target elements are contained in a single managed system, such as an
array platform.

Remote replication specifies that the source elements and the target elements are contained in separate
systems.

For remote replication, the client may interact with both the source system and the target system, but the
client only invokes the replication methods to a single replication service.

54 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Replication Services object model
Data can be copied from a source element or group of elements to a target element. The data can be
copied within the same storage system, or across a connection to a different storage system.

See Figure 9 on page 55 and Figure 10 on page 56.

Figure 9: Replication Services (Local) SMI-S model for IBM FlashSystem A9000 and A9000R systems

Functional profiles, diagrams, and methods 55

Figure 10: Replication Services (Remote) SMI-S model for IBM FlashSystem A9000 and A9000R systems

Replication Service capabilities

Use IBM FlashSystem A9000 and A9000R terminology to map to Storage Management Initiative
Specification (SMI-S) specific terminology:

Table 28: Mapping IBM FlashSystem A9000 and A9000R terminology to SMI terminology

IBM FlashSystem
A9000 and
A9000R
Terminology SMI Terminology Description

IBM FlashSystem A9000
and A9000R CIM Agent
support

Snapshot Asynchronous Snapshot
Local

A "Point-in-Time",
associated virtual copy of
the source element. The
target element enables
visibility into a session.

version 12.0 or later

Volume copy Synchronous Clone Local A full, "Point-In-Time",
unassociated local copy of
the source element.

version 12.0 or later

56 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 28: Mapping IBM FlashSystem A9000 and A9000R terminology to SMI terminology (continued)

IBM FlashSystem
A9000 and
A9000R
Terminology SMI Terminology Description

IBM FlashSystem A9000
and A9000R CIM Agent
support

Synchronous
Remote Mirroring

Synchronous Mirror Remote A synchronized remote copy
of the source element.

version 12.0.1 or later

Asynchronous
Remote Mirroring

Asynchronous Mirror
Remote

An asynchronous remote
copy of the source element.

version 12.0.2 or later

The single instance of the class ReplicationServiceCapabilities and its methods describe the various
capabilities of the service. You can examine the ReplicationServiceCapabilities instance and invoke its
methods to determine the specific capabilities of a replication service implementation.

Table 29: Replication Service methods

Method Description

ConvertSyncTypeToReplicationType Translates CopyType, Mode, and Local/Remote to the
corresponding ReplicationType

ConvertReplicationTypeToSyncType Translates ReplicationType to the corresponding
CopyType, Mode, and Local/Remote

GetSupportedFeatures Determines supported features

GetSupportedGroupFeatures Determines supported group features

GetSupportedCopyStates Determines the supported copy states

GetSupportedGroupCopyStates Determines supported group copy states

GetSupportedWaitForCopyStates Determines supported wait for copy states

GetSupportedConsistency Determines supported consistency

GetSupportedOperations Determines supported operations

GetSupportedGroupOperations Determines supported group operations

GetSupportedListOperations Determines supported list operations

GetSupportedMaximum Determines supported maximum

GetDefaultConsistency Determines default consistency

GetDefaultGroupPersistency Determines default group persistency

GetSynchronizationSupported For the supplied element, this method returns the
supported synchronization operations in a series of
parallel output arrays.

GetSupportedOperationsForSynchronization For the supplied synchronized association, this
method returns the supported operations in a series of
parallel output arrays.

Replication Services methods
The following sections describe functional methods associated with the Replication Services profile and
object model, including uses of and parameters used by each method.

• “Group management” on page 58
• “Creating a consistency group” on page 59

Functional profiles, diagrams, and methods 57

• “Deleting a consistency group” on page 59
• “Adding volumes to a consistency group” on page 59
• “Removing volumes from a consistency group” on page 59
• “Replication management” on page 60
• “Creating a snapshot or clone” on page 62
• “Restoring a snapshot to a volume or manipulating a mirror consistency group” on page 63
• “Modifying a list of synchronizations using a batch operation” on page 64
• “Retrieving target elements” on page 65
• “Retrieving snapshot or mirror relationships” on page 65
• “Retrieving strings of references to snapshots, snapshot groups, or mirror relationships” on page 66
• “Retrieving peer systems” on page 66
• “Creating new storage objects that are replicas of specified source storage objects” on page 66

Group management
The CIM agent supports group manipulation of consistency groups and snapshot groups.

See Table 30 on page 58, Figure 11 on page 58, and Table 31 on page 58.

Table 30: Group management classes

IBM FlashSystem A9000 and
A9000R

Storage Management Initiative
Specification (SMI-S) class

IBM FlashSystem A9000 and
A9000R CIM class

Consistency group CIM_ReplicationGroup IBMTSDS_ConsistencyGroup

Snapshot group CIM_ReplicationGroup IBMTSDS_SnapshotGroup

Association between Consistency
group and volumes in it

CIM_OrderedMemberOfCollection IBMTSDS_ConsistencyGroupTo
OrderedMembers

Association between Snapshot
group and snapshots in it

CIM_OrderedMemberOfCollection IBMTSDS_SnapshotGroupTo
OrderedMembers

Figure 11: Sample local group information retrieval

Table 31: Extrinsic methods for group management

Method Description

CreateGroup Creates a consistency group

58 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Table 31: Extrinsic methods for group management (continued)

Method Description

DeleteGroup Deletes an existing consistency group

AddMembers Adds volumes to a consistency group

RemoveMembers Removes volumes from a consistency group

Creating a consistency group
The IBMTSDS_ReplicationService. CreateGroup method creates a consistency group.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService. CreateGroup method.

GroupName
As an input, refers to the name of the group that is created. If not specified, a random name is
generated.

Members
As an input, refers the members to be added to the group that is created. If not specified, an empty
group is created.

ReplicationGroup
As an output, refers to the group that is created.

Deleting a consistency group
The IBMTSDS_ReplicationService. DeleteGroup method deletes an existing consistency group.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService. DeleteGroup method.

RemoveElements
As an input, a value of true indicates that members in this group are removed before you delete the
group. If one or more elements in the group are in a replication relationship, its value is ignored.

ReplicationGroup
As an input, refers to the consistency group that you want to delete.

Adding volumes to a consistency group
The IBMTSDS_ReplicationService. AddMembers method adds volumes to a consistency group.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService. AddMembers method.

ReplicationGroup
As an input, refers to the consistency group to which members are added.

Members
As an input, refers to volumes to be added to the group. All specified volumes must be in the same
pool of the consistency group.

Removing volumes from a consistency group
The IBMTSDS_ReplicationService. RemoveMembers method removes volumes from a consistency group.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService. RemoveMembers
method.

Functional profiles, diagrams, and methods 59

ReplicationGroup
As an input, refers to the consistency group from which members are removed.

Members
As an input, refers to volumes to be removed from the group.

DeleteOnEmptyElement
As an input, a value of true indicates that the consistency group is deleted if all members are
removed.

Replication management
IBM FlashSystem A9000 and A9000R support local replication manipulation, including local snapshot
and clone, and also supports remote replication manipulation, including volume and consistency group
mirroring.

See the following tables and figures for information about replication management:

Table 32: Replication management classes

IBM
FlashSystem
A9000 and
A9000R SMI class IBM FlashSystem A9000 and A9000R CIM class

Volume,
snapshot

CIM_StorageVolume IBMTSDS_SEVolume

Remote volume /
consistency
group

CIM_ReplicationEntity IBMTSDS_ReplicationEntity

Association
between volume
and its snapshot

CIM_StorageSynchronized IBMTSDS_StorageSynchronized

Association
between
consistency
group and its
snapshot group

CIM_GroupSynchronized IBMTSDS_GroupSynchronized

Association
between
mirrored volumes

CIM_StorageSynchronized IBMTSDS_SourceConsistencyStorageSynchronized/
IBMTSDS_TargetConsistencyStorageSynchronized

Association
between
mirrored
consistency
groups

CIM_GroupSynchronized IBMTSDS_SourceConsistencyGroupSynchronized/
IBMTSDS_TargetConsistencyGroupSynchronized

See Figure 12 on page 61.

60 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Figure 12: Sample remote group information retrieval

Note: The IBMTSDS_SourceConsistencyStorageSynchronized and
IBMTSDS_TargetConsistencyStorageSynchronized classes are association classes which associate the
source volume with the target volume.

They are essentially the same association class, but differ in how they get data from the Primary IBM
FlashSystem A9000 or IBM FlashSystem A9000R and the Secondary IBM FlashSystem A9000 or IBM
FlashSystem A9000R respectively; see Figure 13 on page 61.

At the same time, the IBMTSDS_SourceConsistencyGroupSynchronized and
IBMTSDS_TargetConsistencyGroupSynchronized classes associate the source consistency group with
the target consistency group.

Figure 13: Association classes for mirrored volumes and consistency groups

Functional profiles, diagrams, and methods 61

Table 33: Extrinsic methods for replication management

Method Description

CreateElementReplica Create a snapshot of a volume, or a duplication
snapshot of a snapshot, or a clone of a volume.

CreateGroupReplica Create a snapshot group of a consistency group.

ModifyReplicaSynchronization For local replication service, restore a snapshot
or a snapshot group; or delete a snapshot or a
snapshot group.

ModifyListSynchronization Restore a list of snapshots or snapshot groups;
or delete snapshots or snapshot groups.

GetAvailableTargetElements Return snapshots of a specified volume or
snapshot.

GetPeerSystems Get all of the peer systems.

CreateGroupReplicaFromElements Create consistency group and volumes mirror.

GetReplicationRelationships Get all of available synchronization
relationships.

GetReplicationRelationshipInstances Get all of available synchronization relationship
instances as strings of references.

Creating a snapshot or clone
The IBMTSDS_ReplicationService. CreateElementReplica method creates a snapshot of a volume,
duplicate snapshot of a snapshot, clone of a volume, and clone of a snapshot.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService. CreateElementReplica
method.

ElementName
As an input, refers the name for the volume or clone being created. If not specified, a random name is
generated.

SyncType
As an input, refers the type of replica to be created. To create a snapshot, specify 7; to create a clone,
specify 8.

Mode
As an input, refers the mode of replica to be created. Only 3 is supported, which means an
asynchronous replica is created if specified.

SourceElement
As an input, refers the source volume or snapshot for which the replica is created.

TargetElement
As an input, refers to a target element to use if specified. This parameter cannot be specified when
you are creating a snapshot. As an output, refers to the replica that is created.

TargetPool
As an input, refers the pool in which the replica is being created. For snapshot creation, if specified, it
must be an instance of IBMTSDS_SnapshotPool which is in the same pool of the source element. For
clone creation, if specified, it can be an instance of IBMTSDS_VirtualPool representing any pool in the
device. If not specified, the Common Information Model (CIM) selects the first available pool on the
device to create the clone.

62 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

WaitForCopyState
As an input, refers to the copy state the replica must reach before the method returns. Only 4 is
supported if specified.

Creating a snapshot group for a consistency group
The IBMTSDS_ReplicationService. CreateGroupReplica method creates a snapshot group for a
consistency group.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService. CreateGroupReplica
method.

RelationshipName
As an input, refers to the name of the snapshot group that is being created. If not specified, a random
name is generated.

SyncType
As an input, refers the type of replica to be created. Only 7 is supported if specified because this
method can create a snapshot of a consistency group.

Mode
As an input, refers the mode of replica to be created. Only 3 is supported if specified, which means an
asynchronous snapshot group is created.

SourceGroup
As an input, refers to a consistency group for which the snapshot group is being created.

TargetGroup
As an output, refers to the snapshot group that is being created.

Consistency
As an input, refers to the group consistency. Only 3 is supported if specified.

Synchronization
As an output, refers to the created association between the source consistency group and the
snapshot group that is created.

TargetPool
As an input, refers to the pool in which the replica is being created. The pool must be the same as the
pool of the SourceGroup if specified.

WaitForCopyState
As an input, refers to the copy state the replica must reach before the method returns. Only 4 is
supported if specified.

Restoring a snapshot to a volume or manipulating a mirror consistency group
For local replication service, use the IBMTSDS_ReplicationService. ModifyReplicaSynchronization method
to restore a snapshot to a volume, restore a snapshot group to a consistency group, delete a snapshot,
and delete a snapshot group. For remote replication service, use the IBMTSDS_ReplicationService.
ModifyReplicaSynchronization method to manipulate the mirror consistency group (for example, to split
the mirrored consistency group or set up failover for the mirrored consistency group).

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService.
ModifyReplicaSynchronization method.

Operation
As an input, refers to the type of modification to be made to the replica. The following values/
modifications are supported: 4 (Activate), 5 (AddSyncPair), 7 (Deactivate), 8 (Detach), 10 (Failover),
12 (Fracture), 13 (RemoveSyncPair), 14 (ReSync Replica), 15 (Restore from Replica), 19 (Return To
ResourcePool) and 20 (Reverse Roles), and 21 (Split).

Functional profiles, diagrams, and methods 63

Synchronization
As an input, refers to the replica synchronization to be modified. For local, it must be an instance of
IBMTSDS_GroupSynchronized or IBMTSDS_StorageSynchronized class. For remote, it must be an
instance of IBMTSDS_SourceConsistencyGroupSynchronized or
IBMTSDS_SourceConsistencyStorageSynchronized.

WaitForCopyState
As an input, refers to the copy state the replica must reach before the method returns. The values 3,
4, 8, and 10 are supported, if specified. Different operations correspond with different
WaitForCopyState values, as shown in Table 34 on page 64.

Table 34: Operations, operation descriptions, and corresponding WaitForCopyState states

Operation
Operation Description (from
profile)

Corresponding WaitForCopyState
Value

Activate Activate an Inactive or Prepared
StorageSynchronized association.

Unsynchronized

Detach Remove the association between
the source and target elements.
Does not delete the target element.

N/A

Failover Enable the read and write
operations from the host to the
target element. This operation is
useful for situations when the
source element is unavailable.

Failedover

Fracture/Split Separate the target element from
the source element.

Inactive

Resync Replica Resynchronize a fractured target
element. Or, from a Broken or
Aborted relationship. To continue
from the Broken state, the problem
should be corrected first before
resyncing the replica. Also, to
continue from the Aborted state.

Synchronized

Reverse Roles Switch the source and the target
element roles. The source element
may need to be Read Only. See
GetSupportedFeatures in
capabilities.

Unsynchronized

Add/Remove SyncPair Add/Remove mirrored volumes
into/from mirrored consistency
group.

Synchronized

Note: The ReverseRoles and ResyncReplica operations may take some time to execute, so a Job will
be returned (4096).

Modifying a list of synchronizations using a batch operation
The IBMTSDS_ReplicationService. ModifyListSynchronization method is a batch operation of the
IBMTSDS_ReplicationService. ModifyReplicaSynchronization method, which modifies a list of
synchronizations.

For a list of applicable parameters, see “Restoring a snapshot to a volume or manipulating a mirror
consistency group” on page 63.

64 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Retrieving target elements
The IBMTSDS_ReplicationService. GetAvailableTargetElements method retrieves all of the candidate
target elements for the supplied source element.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService.
GetAvailableTargetElements method.

SourceElement
As an input, refers to the source volume. It must be an instance of IBMTSDS_SEVolume class.

SyncType
As an input, refers to type of target elements. Only 7 is supported if specified.

Mode
As an input, refers to the mode of target elements. Only 3 is supported if specified.

Candidates
As an output, refers to the target elements of the source volume.

Retrieving snapshot or mirror relationships
The IBMTSDS_ReplicationService. GetReplicationRelationships method retrieves all of the snapshot or
mirror relationships on an IBM FlashSystem A9000 or IBM FlashSystem A9000R device.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService.
GetReplicationRelationships method.

Type
As an input, refers to the replication type. To get snapshots and mirrored volumes, specify 2; to get
snapshot groups, specify 3; if not specified, all snapshots and snapshot groups are returned.

SyncType
As an input, refers to type of target elements. To get snapshots and snapshot groups, specify 7. To get
mirror relationships, specify 7; if no value is specified, all snapshots, snapshot groups, and mirror
relationships are returned.

Mode
As an input, refers to mode of target elements. 2 and 3 are supported if specified.

Locality
As an input, refers to locality of target elements. To get mirrored volumes and consistency groups,
specify 3. To get snapshots and snapshot groups, specify 2. If no value is specified, all snapshots,
snapshot groups, and mirror relationships are returned.

CopyState
As an input, refers to copy state of target elements. Only 4 is supported if specified.

Synchronizations
As an input, refers to references of the returned snapshots, snapshot groups, or mirror relationships.

Functional profiles, diagrams, and methods 65

Retrieving strings of references to snapshots, snapshot groups, or mirror relationships
Use the IBMTSDS_ReplicationService. GetReplicationRelationshipInstances to retrieve strings of
references to snapshots, snapshot groups, or mirror relationships.

Retrieving peer systems
Use the IBMTSDS_ReplicationService. GetPeerSystems method to retrieve (or start a job to retreive) all of
the peer systems. A peer system is a system that is known and visible to the replication service. This
method will return all the connected IBM FlashSystem A9000 or IBM FlashSystem A9000R systems.

Creating new storage objects that are replicas of specified source storage objects
Use the IBMTSDS_ReplicationService. CreateGroupReplicaFromElements method to create (or start a job
to create) new storage objects that are replicas of the specified source storage objects (SourceElements).

If 0 is returned, the function completed successfully, and no ConcreteJob instance is created. If
4096/0x1000 is returned, a ConcreteJob is started, and a reference to it is returned in the Job output
parameter. This method combines the functionality of the CreateGroup and CreateGroupReplica methods,
in one call. This method creates mirrors for volumes and consistency groups and then adds the mirrored
volumes into the mirrored consistency groups.

Parameters

The following list describes the parameters of the IBMTSDS_ReplicationService.
CreateGroupReplicaFromElements method.

SyncType
As an input, refers to the type of target elements. Only 6 is supported.

Mode
As an input, refers to the mode of target elements. 2 and 3 are supported, if specified.

SourceGroup
As an input, refers to a source group. It must be an instance of IBMTSDS_ConsistencyGroup class.

SourceElements
As an input, refers to the source volumes. It must be an instance of IBMTSDS_SEVolume class.

SourceGroupName
As an input, refers to the name of the source group to be created. As an output, refers to the name of
the source group that is being created.

TargetGroup
As an input, refers to a target group. It must be an instance of IBMTSDS_ConsistencyGroup class. If
not specified, a target group will be created in the target pool, which is specified by the TargetPool
parameter. TargetGroup and TargetPool can't be NULL at the same time.

TargetGroupName
As an input, refers to the name of the target group to be created.

Consistency
As an input, only 3 is supported, if specified.

TargetPool
As an input, refers to the target pool that puts the target elements (the replicas). It must be an
instance of IBMTSDS_VirtualPool. If not specified, it will be gotten from the TargetGroup parameter. If
TargetGroup and TargetPool are specified at the same time, and TargetGroup is not in the TargetPool
parameter, TargetGroup will be moved to it.

WaitForCopyState
As an input, refers to the copy state the replica must reach before the method returns. Only 3 is
supported, if specified.

Job
As an output, refers to the job.

66 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Replication Services indications
The IBM FlashSystem A9000 and A9000R Common Information Model (CIM) agent supports the
following Replication Services profile indications.

Table 35: Replication Services profile indications

Indication Description

IBMTSDS_StorageSynchronized InstCreation After a snapshot is created or snapshot
group is created

IBMTSDS_GroupSynchronized InstCreation After a snapshot group is created

IBMTSDS_GroupSynchronized InstDeletion After a snapshot group is deleted

IBMTSDS_StorageSynchronized InstDeletion After a snapshot or snapshot group is
deleted

IBMTSDS_ConsistencyGroupInstDeletion After a consistency group is deleted

IBMTSDS_ConsistencyGroupInstCreation After a consistency group is created

IBMTSDS_ConsistencyGroupInstModification After a consistency group is renamed

IBMTSDS_ConsistencyGroupToOrderedMembersInstCreation After volume is added/removed into/
from consistency group

IBMTSDS_ConsistencyGroupToOrderedMembersInstDeletion After all volumes are removed from the
consistency group

IBMTSDS_SourceConsistencyGroupSynchronizedInstDeletion After the mirror relationship is deleted

IBMTSDS_SourceConsistencyGroupSynchronizedInstCreation After the mirror relationship is created

IBMTSDS_TargetConsistencyGroupSynchronizedInstCreation After the mirror relationship is created

IBMTSDS_SourceConsistencyGroupSynchronizedInstModification After the mirror relationship designation
is changed

IBMTSDS_TargetConsistencyGroupSynchronizedInstModification After the mirror relationship designation
is changed

Job Control profile
In some profiles, like the replication services profile, some of the methods described may take some time
to execute. In these cases, a mechanism is needed to handle asynchronous execution of the method as a
'job.' The Job Control profile defines the constructs and behavior for job control.

When the Job Control profile is implemented, and a client executes a method that executes
asynchronously, a reference to an instance of ConcreteJob is returned and the return value for the method
is set to Method parameters checked - job started (4096). The ConcreteJob instance allows
the progress of the method to be checked, and instance indications can be used to subscribe for job
completion.

Although there are many methods, such as format volume and copy volume that are asynchronous jobs, in
this work item, we only implement the job control for the volume/consistency group mirror.

In the IBM FlashSystem A9000 and A9000R Common Information Model (CIM) provider, the methods
CreateGroupReplicaFromElements and ModifyReplicaSynchronization will output a job that will be
associated to the elements whose references are created or modified as a side-effect of the job's
execution via the AffectJobElement association.

Functional profiles, diagrams, and methods 67

The lifetime of a completed job instance, and thus the AffectedJobElement association to the appropriate
Element instance, is currently implementation dependent. But, the set of AffectedJobElement
associations to the Input and Output elements present when the job finishes execution will remain until
the job is deleted.

Job Control object model
The Job Control profile provides a mechanism to handle asynchronous execution of methods that take
some time to execute.

For a diagram of how this mechanism works, see Figure 14 on page 68.

Figure 14: Job Control SMI-S model for IBM FlashSystem A9000 and A9000R systems

For IBMTSDS_MirrorJob, if all the operations completed successfully, the JobState value will be 7
(Completed), and the OperationStatus value will be 2 (Ok), 17 (Completed). If not, the JobState value will
be 10 (Exception), and the OperationStatus value will be 6 (Error), 17 (Completed). If the job finished, and
the duration time was over 60 minutes, the job will be deleted automatically.

Thin Provisioning profile
Thin provisioning is a capability of some Block Services implementations. It defers provisioning of backing
store for regions of a volume until the regions are accessed (written) by the consumer (for example, host
file system).

The alternatives (fully provisioned volumes) allocate all the requested capacity from the backing store at
the time the volume is created. For thin provisioned volumes, the block server implementation tracks
information about which regions are accessed. After a region is accessed, the backing storage is
allocated.

The Thin Provisioning profile allows Storage Management Initiative Specification (SMI-S) clients to
determine whether a storage system (and children such as pools and volumes) supports thin provisioning.
Clients can also determine the difference between the exposed "virtual capacity" and actual committed
physical storage and create thinly provisioned volumes and pools.

For IBM FlashSystem A9000 and A9000R, pools are provisioned with virtual capacity. It is not possible to
provision a pool with a set amount of physical capacity.

From a volume perspective, you define the volume soft size, and it takes the size from the virtual size of
the pool. Upon creation of a volume in a pool, no preallocation of hard capacity is done. Only soft capacity
is taken from the virtual capacity of the pool.

68 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Thin Provisioning object model
Compared with the Block Services profile, the Thin Provisioning profile has more classes and some
existing classes with modified properties.

See Figure 15 on page 69 for the Thin Provisioning Storage Management Initiative Specification (SMI-S)
model for IBM FlashSystem A9000 and A9000R systems.

Figure 15: Thin Provisioning SMI-S model for IBM FlashSystem A9000 and A9000R systems

As with the Block Services profile, the CIM agent has four CIM_StorageSetting instances, but
IBMTSDS_VirtualPoolSetting adds an instance type in the Thin Provisioning profile. One is the default, and
the other is a newly created one.
IBMTSDS_VirtualPoolSetting.InstanceID="IBMTSDS:IBM XIV Virtual Storage Pool Setting"

This StorageSetting instance is supplied as the Goal parameter for the CreateOrModifyStoragePool
method to create or modify a regular thin provisioning VirtualPool instance.

IBMTSDS_VirtualPoolSetting.InstanceID="IBMTSDS:IBM.2810-1310129-112714143137626"
This StorageSetting instance is supplied as the Goal parameter for the CreateOrModifyStoragePool
method to create or modify a thin provisioning VirtualPool instance.

For more information about the thin provisioning object model, see the BlockServices.mof file.

Extrinsic Methods

Table 36: Replication Service methods

Method Description

CreateSetting Creates an IBMTSDS_VirtualPoolSetting instance.

modify Modifies the properties of the newly created
IBMTSDS_VirtualPoolSetting instance.

delete Deletes the newly created
IBMTSDS_VirtualPoolSetting instance.

CreateOrModifyStoragePool Creates or modifies a thin provisioning VirtualPool
instance.

Thin Provisioning methods
The following sections describe functional methods associated with the Thin Provisioning profile and
object model, including uses of and parameters used by each method.

• “Creating an IBMTSDS_VirtualPoolSetting instance” on page 70
• “Modifying the properties of a newly created IBMTSDS_VirtualPoolSetting instance” on page 70

Functional profiles, diagrams, and methods 69

• “Deleting a new IBMTSDS_VirtualPoolSetting instance” on page 70
• “Creating or modifying a thin provisioning virtual pool” on page 70
• “Creating a thin provisioning pool” on page 71
• “Thin Provisioning indications” on page 71

Creating an IBMTSDS_VirtualPoolSetting instance
You can use the IBMTSDS_PrimordialStoragePoolCapabilities. CreateSetting method to create an
IBMTSDS_VirtualPoolSetting instance. The newly created instance will expire after 600 seconds.

Parameters

The following list describes the parameters of the IBMTSDS_PrimordialStoragePoolCapabilities.
CreateSetting method.

SettingType
As an input, the value must be 2 (default), 3 (goal), or null.

NewSetting
As an output, refers to the newly created IBMTSDS_VirtualPoolSetting instance.

Modifying the properties of a newly created IBMTSDS_VirtualPoolSetting instance
You can use the IBMTSDS_VirtualPoolSetting. modify method to modify the properties of a newly created
IBMTSDS_VirtualPoolSetting instance.

Parameters

The following list describes the parameters of the IBMTSDS_VirtualPoolSetting. modify method.

ThinProvisionedInitialReserve
As an input, represents the snapshot size of the newly created pool to be used as the Goal parameter
for the CreateOrModifyStoragePool method.

ThinProvisionedPoolType
As an input, just 7 is supported.

Cop
As an input, represents the Common Information Model (CIM) object paths (COPs) of the newly
created IBMTSDS_VirtualPoolSetting instance to modify.

Deleting a new IBMTSDS_VirtualPoolSetting instance
You can use the IBMTSDS_VirtualPoolSetting. delete method to delete the newly created
IBMTSDS_VirtualPoolSetting instance.

Note: The default instance of IBMTSDS_VirtualPoolSetting cannot be deleted.

Parameters

The following list describes the parameters of the IBMTSDS_VirtualPoolSetting. delete method.

Cop
As an input, represents the Common Information Model (CIM) object paths (COPs) of the newly
created IBMTSDS_VirtualPoolSetting instance to delete.

Creating or modifying a thin provisioning virtual pool
You can use the IBMTSDS_StorageConfigurationService. CreateOrModifyStoragePool method to create or
modify a thin provisioning VirtualPool instance.

Parameters

The following list describes the parameters of the IBMTSDS_StorageConfigurationService.
CreateOrModifyStoragePool method.

70 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Pool (required for modification)
As an input parameter, specifies whether you want to create or modify a pool. If you specify a
reference to a pool, indicates that you want to modify the pool. If the parameter is left null, indicates
that you want to create a pool.

InPools
The InPools parameter specifies which pool to create the pool from. To create a VirtualPool instance,
only the object reference of IBMTSDS_PrimordialStoragePool is allowed for this parameter since all
VirtualPool instances are created in Primordial StoragePool.
To create a SnapshotPool instance, only the object reference of IBMTSDS_VirtualPool is allowed for
this parameter, if specified, since a SnapshotPool instance is created in a VirtualPool instance.

Note: The Common Information Model (CIM) schema defines this input parameter to be an array of
strings that represent CIM object paths (COPs), and not actual references to objects.

Goal
The Goal parameter represents the StorageSetting instance of the pool to be created. To create a
VirtualPool instance, only the object reference of IBMTSDS_VirtualPoolSetting is allowed.
To create a SnapshotPool instance, only the object reference of IBMTSDS_SnapshotPoolSetting is
allowed. See the BlockServer.mof file for details.

ElementName
The ElementName property provides a means for you to set a meaningful name for the pool that is
being created or modified. If specified, it is limited to 63 characters and can contain letters, digits,
blank spaces, -, _, . and ~ characters. Blank spaces cannot be the beginning and ending characters. If
not specified during pool creation, a random pool name is generated in the format pool<random
integer>.

Note: The name of the pool must be unique in the system. It cannot be a name that is already
assigned to one of the other pools in the system.

Size (required for creation)
As an input parameter, Size specifies the requested size of the pool. Null is not allowed for pool
creation. As an output parameter, Size specifies the achieved pool's size.

Creating a thin provisioning pool
You can use the CreateOrModifyStoragePool method to create a thin provisioning pool.

1. Call IBMTSDS_PrimordialStoragePool.GetSupportedSizeRange with ElementType set to
StoragePool. If the return code is 0 (success), specify a size.

2. Call invokeMethod on IBMTSDS_PrimordialStoragePoolCapabilities.CreateSetting and specify the
SettingType value.

3. Call enumerateInstances on IBMTSDS_VirtualPoolSetting, and then save the CIMObjectPath value of
this newly created instance.

4. Call invokeMethod on IBMTSDS_VirtualPoolSetting.modify and specify the
IBMTSDS_VirtualPoolSetting value obtained in step 3 to Cop and pool snapshot size from
ThinProvisionedInitialReserve.

5. Call invokeMethod on IBMTSDS_StorageConfigurationService.CreateOrModifyStoragePool and specify
the IBMTSDS_VirtualPoolSetting value obtained in step 3 to Goal and the ElementName value to Size.

6. Save the pool output parameter. It is the reference to the thin provisioning VirtualPool that was
created.

Thin Provisioning indications
The IBM FlashSystem A9000 and A9000R Common Information Model (CIM) agent supports three Thin
Provisioning profile indications.

Functional profiles, diagrams, and methods 71

Table 37: Thin Provisioning profile indications

CIM Indication
IBM FlashSystem A9000 and A9000R
Event Description

CAPACITY_WARNING STORAGE_POOL_VOLUME_
USAGE_TOO_HIGH

Thin provisioned volume or pool with
the identifier Volume or Pool ID
capacity in use near available limit.

CAPACITY_CRITICAL STORAGE_POOL_EXHAUSTED Thin provisioned volume or pool with
the identifier Volume or Pool ID
capacity in use exceeded available
limit.

CAPACITY_OKAY STORAGE_POOL_VOLUME_
USAGE_BACK_TO_NORMAL

Thin provisioned volume or pool with
the identifier Volume or Pool ID
capacity condition cleared.

72 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Chapter 5. Conformance tests
All Storage Networking Industry Association (SNIA) official Certification Test Programs (CTP) and
Microsoft System Center Virtual Machine Manager (SCVMM) Storage Automation tests have been
completed.

SNIA official CTP tests

Table 38: SNIA CTP results

IBM FlashSystem A9000 and
A9000R CIM agent release Official CTP Test Suite Official CTP Test Results

12.0.x • Storage Management Initiative
Specification (SMI-S) version
1.6

• Test version 1.6.0.1081

http://www.snia.org/
tech_activities/standards/
curr_standards/smi

SCVMM Storage Automation tests

All Microsoft System Center Virtual Machine Manager (SCVMM) 2012 Storage Automation tests were
completed on IBM FlashSystem A9000 and A9000R with IBM FlashSystem A9000 and A9000R Common
Information Model (CIM) agent version 12.0.

© Copyright IBM Corp. 2016, 2018 73

http://www.snia.org/tech_activities/standards/curr_standards/smi
http://www.snia.org/tech_activities/standards/curr_standards/smi
http://www.snia.org/tech_activities/standards/curr_standards/smi

74 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Notices

These legal notices pertain to the information in this IBM Storage product documentation.

This information was developed for products and services offered in the US. This material may be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119

© Copyright IBM Corp. 2016, 2018 75

Armonk, NY 10504-1785
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

76 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary includes terms and definitions for IBM FlashSystem A9000 and A9000R.

This glossary includes selected terms and definitions from:

• The American National Standard Dictionary for Information Systems, ANSI X3.172–1990, copyright
1990 by the American National Standards Institute (ANSI), 11 West 42nd Street, New York, New York
10036. Definitions derived from this book have the symbol (A) after the definition.

• IBM Terminology, which is available online at the IBM Terminology website (www.ibm.com/software/
globalization/terminology/index.jsp). Definitions derived from this source have the symbol (GC) after the
definition.

• The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions derived from this book have the symbol (I) after the definition.
Definitions taken from draft international standards, committee drafts, and working papers that the
ISO/IEC JTC1/SC1 is developing have the symbol (T) after the definition, indicating that final agreement
has not been reached among the participating National Bodies of SC1.

This glossary uses the following cross-reference forms:
See

Refers the reader to one of two kinds of related information:

• A term that is the expanded form of an abbreviation or acronym. This expanded form of the term
contains the full definition.

• A synonym or more preferred term

See also
Refers the reader to one or more related terms.

Contrast with
Refers the reader to a term that has an opposite or substantively different meaning.

A
access

To obtain computing services or data.
In computer security, a specific type of interaction between a subject and an object that results in
flow of information from one to the other.

Active Directory
Microsoft Active Directory (AD) provides directory (lookup), DNS and authentication services.

alerting event
An event that triggers recurring event notifications until it is cleared.

allocated storage
The space that is allocated to volumes but not yet assigned. Contrast with assigned storage.

API
See application programming interface (API).

application programming interface (API)
An interface that allows an application program that is written in a high-level language to use specific
data or functions of the operating system or another program.

assigned storage
The space that is allocated to a volume and that is assigned to a port.

Asynchronous interval
Denotes, per given coupling, how often the master runs a new sync job.

© Copyright IBM Corp. 2016, 2018 77

http://www-01.ibm.com/software/globalization/terminology/index.jsp

authorization level
The authorization level determines the permitted access level to the various functions of IBM Hyper-
Scale Manager:
Read only

Only viewing is allowed.
Full

Access to all the configuration and control functions is allowed, including shutdown of the system.
This level requires a password.

auto-delete priority
As the storage capacity reaches its limits, snapshots are automatically deleted to make more space.
The deletion takes place according to the value set for each snapshot, as follows:
1

last to be deleted
4

first to be deleted

Each snapshot is given a default auto delete priority of 1 at creation.

B
basic mode

A means of entering CLI commands on the CLI client that requires specifying IP address and login
information for each command. Additional output formatting options are available in basic mode.

best effort mode
A mode of remote mirroring in which I/O operation is not suspended when communication between a
primary and secondary volume is broken.

C
call home

A communication link established between the storage system and a service provider. The storage
product can use this link to call IBM or to another service provider when it requires service. With
access to the storage system, service personnel can perform service tasks, such as viewing error logs
and problem logs or initiating trace and dump retrievals.

clearing events
The process of stopping the recurring event notification of alerting events.

CLI
The command-line interface (CLI). See command-line interface (CLI)

CLI client
The system on which the CLI command is entered.

CLI identification parameters
Parameters that identify the user issuing the command and the IBM FlashSystem A9000 or IBM
FlashSystem A9000R system (if any) on which the command is to run. CLI identification parameters
can be specified:

• By entering them at the beginning of an interactive mode session
• In a configuration file
• When running a command in basic mode
• When running a list of commands as a batch

CLI system command
An CLI command that is sent to the IBM FlashSystem A9000 or IBM FlashSystem A9000R system for
processing.

78 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

CLI utility command
A CLI command that is issued on the CLI client. A CLI utility command is not sent to an IBM
FlashSystem A9000 or IBM FlashSystem A9000R system for processing. CLI utility commands are
used for setting up configurations on the CLI client and for queries (for example, of software version)
that can be processed on the client.

command-line interface (CLI)
The non-graphical user interface used to interact with the system through set commands and
functions. The CLI for IBM FlashSystem A9000 and A9000R.

completion code
The returned message sent as a result of running CLI commands.

consistency group
A cluster of specific volumes for which a snapshot can be taken simultaneously as a group, thus
creating a synchronized snapshot. The volumes in a consistency group are grouped into a single
volume set. Snapshots can be taken for the volume set in multiple snapshot sets under the specific
consistency group. See also snapshot set, volume set.

coupling
A primary volume and a secondary volume connected together through mirroring definitions.

D
data availability

The degree to which data is available when needed. Availability is typically measured as a percentage
of time in which the system is able to respond to data requests (for example, 99.999% available).

data module
A module dedicated to data storage. A fully populated rack contains nine dedicated data modules,
each with 12 disks.

default storage pool
The default storage pool when a volume is created.

destination
See event destination.

E
escalation

A process in which event notifications are sent to a wider list of event destinations because the event
was not cleared within a certain time.

event destination
An address for sending event notifications.

event notification rule
A rule that determines which users are to be notified, for which events and by what means.

event notification
The process of notifying a user about an event.

event
A user or system activity that is logged (with an appropriate message).

F
fabric

The hardware that connects workstations and servers to storage devices in a SAN. The SAN fabric
enables any-server-to-any-storage device connectivity through the use of Fibre Channel switching
technology.

FC-AL
Also known as arbitrated loop. A Fibre Channel topology that requires no Fibre Channel switches.
Devices are connected in a one-way loop fashion.

Glossary 79

FC-HBA
Fibre Channel host bus adapter.

FC
See Fibre Channel.

Fibre Channel
Serial data transfer architecture developed by a consortium of computer and mass storage device
manufacturers and now being standardized by ANSI.

functional area
One of the high-level groupings of icons (functional modules) of the left pane in IBM Hyper-Scale
Manager screen (for example, Monitor, Configuration, or Volume management). See functional
module.

functional module
One of the icons of a functional area, on the left pane in IBM Hyper-Scale Manager screen. For
example, System (under Monitor) or Hosts and LUNs (under Configuration). See functional area.

G
Graphical user interface (GUI)

On-screen user interface supported by a mouse and a keyboard.
GUI

See graphical user interface (GUI).

H
H/W

Hardware.
HBA

Host bus adapter.
host interface module

The interface data module serves external host requests with the ability to store data. A fully
populated rack has six interface data modules.

host
A port name of a host that can connect to the system. The system supports Fibre Channel and iSCSI
hosts.

I
I/O

input/output.
image snapshot

A snapshot that has never been unlocked. It is the exact image of the master volume it was copied
from, at the time of its creation. See also snapshot.

interactive mode
A means of entering CLI commands on the CLI client in which the IP address, user, and password
information does not need to be specified for each command.

Internet Protocol
Specifies the format of packets (also called datagrams), and their addressing schemes. See also
Transmission Control Protocol (TCP).

IOPs
input/output (I/O) per second.

IP
See Internet Protocol.

80 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

iSCSI
Internet SCSI. An IP-based standard for linking data storage devices over a network and transferring
data by carrying SCSI commands over IP networks.

L
latency

Amount of time delay between the moment an operation is issued, and the moment it is committed.
LDAP

Lightweight Directory Access Protocol.
LDAP attribute

A property of an LDAP object, with a single or multiple values. A special object attribute is designated
by an LDAP administrator to hold user group memberships values corresponding to IBM FlashSystem
A9000 and A9000R roles.

LDAP authentication
A method for authenticating users by validating the submitted credentials against data stored on an
LDAP directory.

LDAP directory
A hierarchical database stored on an LDAP server and accessed through LDAP calls.

LDAP mapping
An association of data on the LDAP server (a specific LDAP attribute) and data on the IBM
FlashSystem A9000 or IBM FlashSystem A9000R system. The mapping is used to determine which
access rights to grant to an authenticated LDAP user.

LDAP server
A server that provides directory services through LDAP.

LDAP status
The status of an LDAP server.

load balancing
Even distribution of load across all components of the system.

locking
Setting a volume (or snapshot) as unwritable (read-only).

LUN map
A table showing the mappings of the volumes to the LUNs.

LUN
Logical unit number. Exports a systems volume into a registered host.

M
main power cable

The electrical connection between the ac power source and the automatic transfer switch (ATS).
mandatory mode

A mode of remote mirroring in which I/O operation stops whenever there is no communication to the
secondary volume.

master volume
A volume that has snapshots is called the master volume of its snapshots.

MIB
Management Information Base. A database of objects that can be monitored by a network
management system. SNMP managers use standardized MIB formats to monitor SNMP agents.

Microsoft Active Directory
See Active Directory

mirror volume
A volume that contains a backup copy of the original volume.

Glossary 81

mirroring
See remote mirroring.

modified State
A snapshot state. A snapshot in modified state can never be used for restoring its master volume.

multipathing
Used for direct access from host-interface modules to any volume.

P
peer

Denotes a constituent side of a coupling. Whenever a coupling is defined, a designation is specified for
each peer - one peer is designated primary and the other is designated secondary.

pool
See storage pool.

primary volume
A volume that is mirrored for backup on a remote storage system.

R
rack

The cabinet that stores all of the hardware components of the system.
remote mirroring

The process of replicating a volume on a remote system.
remote target connectivity

A definition of connectivity between a port set of a remote target and a module on the local storage
system.

remote target
An additional storage system used for mirroring, data migration, and so on.

role
The actual role that the peer is fulfilling as a result of a specific condition, either a master or a
subordinate.

rule
See event notification rule.

S
SAN

Storage area network.
SCSI

Small computer system interface.
secondary volume

A volume that serves as a backup of a primary volume.
Simple Network Monitor Protocol

A protocol for monitoring network devices. See also MIB, SNMP agent, SNMP manager, SNMP trap.
SMS gateway

An external server that is used to send SMSs.
SMTP gateway

An external host that is used to relay email messages through the SMTP protocol.
snapshot set

The resulting set of synchronized snapshots of a volume set in a consistency group. See also
consistency group, Volume set.

snapshot
A point-in-time snapshot or copy of a volume. See also image snapshot.

82 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

SNMP agent
A device that reports information through the SNMP protocol to SNMP managers.

SNMP manager
A host that collects information from SNMP agents through the SNMP protocol.

SNMP trap
An SNMP message sent from the SNMP agent to the SNMP manager, where the sending is initiated by
the SNMP agent and not as a response to a message sent from the SNMP manager.

SNMP
See Simple Network Monitor Protocol.

snooze
The process of sending recurring event notifications until the events are cleared.

storage pool
A reserved area of virtual disk space serving the storage requirements of the volumes.

Sync Job
A synchronization procedure run by the master at specified user-defined intervals, entailing
synchronization between the master and the subordinate.

synchronization
The process of making the primary volume and secondary volume identical after a communication
downtime or upon the initialization of the mirroring.

T
target

See remote target.
TCP/IP

See Transmission Control Protocol, Internet Protocol.
thin provisioning

The ability to define logical volume sizes that are much larger than the physical capacity installed on
the system.

Transmission Control Protocol
Transmission Control Protocol (TCP) on top of the Internet Protocol (IP) establishes a virtual
connection between a destination and a source over which streams of data can be exchanged. See
also IP.

trap
See SNMP trap.

U
unassociated volume

A volume that is not associated with a consistency group. See Consistency group.
uninterruptible power supply

Provides battery backup power for a determined time, so that the system can power down in a
controlled manner, on the occurrence of a lengthy power outage.

V
volume cloning

Creating a snapshot from a volume.
volume set

A cluster of specific volumes in a consistency group, for which snapshots are taken simultaneously,
thus, creating a synchronized snapshot of all of them. Snapshots of the volume set can be taken into
multiple snapshot sets of the specific consistency group. See also Snapshot set, Volume set.

Glossary 83

volume
A logical address space, having its data content stored on the systems disk drives. A volume can be
virtually any size as long as the total allocated storage space of all volumes does not exceed the net
capacity of the system. A volume can be exported to an attached host through a LUN. A volume can be
exported to multiple hosts simultaneously. See also Storage pool, Unassociated volume.

W
WWPN

Worldwide port name

X
XDRP

The disaster recovery program for the IBM FlashSystem A9000 and A9000R – The remote mirror
feature of the IBM FlashSystem A9000 and A9000R.

84 IBM FlashSystem A9000 IBM FlashSystem A9000R: Open API Reference Guide

Index

A
AssociatorNames 17
Associators 16

B
Block Services

object model 32

C
CIM agent

components 3
concepts 2
IBM FlashSystem A9000 and A9000R 7
limitations 7
overview 1
port number 7
security 5

CIM classes
CIM_AuthorizedPrivilege 46
CIM_FCPort 46
CIM_SCSIProtocolController 46
CIM_SCSIProtocolEndPoint 46
CIM_StorageHardwareID 46
CIM_StorageVolume 46
CIM_SystemSpecificCollection 46

CIM_AuthorizedPrivilege 46
CIM_ERR_ACCESS_ DENIED 20
CIM_ERR_ACCESS_DENIED 10–22
CIM_ERR_ALREADY_EXISTS 12
CIM_ERR_FAILED 10–22
CIM_ERR_INVALID_ CLASS 20
CIM_ERR_INVALID_ NAMESPACE 10–22
CIM_ERR_INVALID_ PARAMETER 10–22
CIM_ERR_INVALID_CLASS 11–16, 18–20
CIM_ERR_INVALID_QUERY 16
CIM_ERR_NO_SUCH_ PROPERTY 19, 20
CIM_ERR_NOT_FOUND 11, 12, 19–21
CIM_ERR_NOT_SUPPORTED 16, 22
CIM_ERR_QUERY_FEATURE_ NOT_SUPPORTED 16
CIM_ERR_QUERY_LANGUAGE_ NOT_SUPPORTED 16
CIM_ERR_TYPE_MISMATCH 20
CIM_FCPort 46
CIM_SCSIProtocolController 46
CIM_SCSIProtocolEndPoint 46
CIM_StorageHardwareID 46
CIM_StorageVolume 46
CIM_SystemSpecificCollection 46
CIMOM

return codes 22
client application

receiving CIMOM error codes 22
clusters 44
component

definitions 4

conformance testing
SCVMM 73
SNIA 73

CreateClass 22
CreateInstance 12

D
DeleteClass 22
DeleteInstance 11
DeleteQualifier 22

E
EnumerateClasses 13
EnumerateInstanceNames 15
EnumerateInstances 14
EnumerateQualifiers 22
error codes 22
ExecuteQuery 16

F
forums ix

G
GetClass 10
GetInstance 11
GetProperty 20
GetQualifier 21
group management

Replication Services 58

H
hosts 44
HTTP

status messages 22

I
IBM FlashSystem A9000 and A9000R CIM classes

IBMTSDS_ SystemSpecificCollection 46
IBMTSDS_FCPort 46
IBMTSDS_Privilege 46
IBMTSDS_SCSIProtocolController 46
IBMTSDS_SEVolume 46
IBMTSDS_StorageHardwareID 46

IBM FlashSystem A9000 and A9000R Open API
components 4
overview 1

IBMTSDS_FCPort 46
IBMTSDS_Privilege 46
IBMTSDS_SCSIProtocolController 46
IBMTSDS_SEVolume 46

 85

IBMTSDS_StorageHardwareID 46
IBMTSDS_SystemSpecificCollection 46

J
Job Control

object model 68

L
LUN mapping 44
LUN masking 44

M
Masking and Mapping

object model 46
methods

AssociatorNames 17
Associators 16
CreateClass 22
CreateInstance 12
DeleteClass 22
DeleteInstance 11
DeleteQualifier 22
EnumerateClasses 13
EnumerateInstanceNames 15
EnumerateInstances 14
EnumerateQualifiers 22
ExecuteQuery 16
GetClass 10
GetInstance 11
GetProperty 20
GetQualifier 21
ModifyClass 22
ModifyInstance 12
ReferenceNames 19
References 18
SetProperty 20
SetQualifier 21

models
Block Services 32
Job Control 68
Masking and Mapping 46
Replication Services 55
Thin Provisioning 69

ModifyClass 22
ModifyInstance 12

P
packages

Block Services 32
Job Control 68
Masking and Mapping 46
Replication Services 55
Thin Provisioning 69

parameters
AssocClass 16, 17
ClassName 10, 13–15
DeepInheritance 13, 14
IncludeClassOrigin 10, 11, 13, 14, 16, 18
IncludeQualifiers 10, 13

parameters (continued)
Instance 12
InstanceName 11, 20
LocalOnly 10, 13
ObjectName 16–19
Property 20
QualifierName 21
Query 16
QueryLanguage 16
ResultClass 16–19
ResultRole 16, 17
Role 16–19
SetName 21

PDFs ix
port number 7
ports 44
profiles

Block Services 31
Masking and Mapping 44

publications ix

R
ReferenceNames 19
References 18
related information ix
Replication management 60
Replication Services

group management 58
object model 55

return code 22
return values

CIM_ERR_ACCESS_DENIED 10–22
CIM_ERR_ALREADY_EXISTS 12
CIM_ERR_FAILED 10–22
CIM_ERR_INVALID_ NAMESPACE 10–22
CIM_ERR_INVALID_ PARAMETER 10–22
CIM_ERR_INVALID_CLASS 11–16, 18–20
CIM_ERR_INVALID_QUERY 16
CIM_ERR_NO_SUCH_ PROPERTY 19, 20
CIM_ERR_NOT_FOUND 11, 12, 19–21
CIM_ERR_NOT_SUPPORTED 16, 22
CIM_ERR_QUERY_FEATURE_ NOT_SUPPORTED 16
CIM_ERR_QUERY_LANGUAGE_ NOT_SUPPORTED 16
CIM_ERR_TYPE_MISMATCH 20
descriptions 22

S
SCVMM testing 73
secure connection

port number 7
SetProperty 20
SetQualifier 21
SNAI testing 73
Storage Management Initiative Specifications (SMI-S)

overview 1
storage pools 31, 44

T
Thin Provisioning

object model 69

86

trademarks 76

V
volumes 31, 44

 87

88

IBM®

Printed in USA

SC27-8561-04

	IBM FlashSystem A9000 IBM FlashSystem A9000R Version 12.0.3 Open API Reference Guide
	Contents
	List of Figures
	List of Tables
	About this guide
	Who should use this guide
	Conventions used in this guide
	Related information and publications
	Getting information, help, and service
	IBM Publications Center
	Sending or posting your comments

	Chapter 1. Introduction
	Storage Management Initiative Specifications (SMI-S) overview
	Common Information Model (CIM) agent overview
	Common Information Model (CIM) concepts

	Common Information Model (CIM) agent components
	Open API element definitions
	Common Information Model (CIM) agent security

	Chapter 2. Installation and configuration
	Multitenancy feature support information

	Chapter 3. Communication concepts and methods
	Common Information Model (CIM) agent communication concepts
	Common Information Model (CIM) agent communication methods
	Obtaining a single class from the target namespace
	Obtaining a single instance from the target namespace
	Deleting a single instance from the target namespace
	Creating an instance in the target namespace
	Modifying an existing instance in the target namespace
	Enumerating classes within a defined target namespace
	Enumerating the names of subclasses of a class defined within the target namespace
	Enumerating instances of a defined class within the target namespace
	Enumerating the names of instances of a class within a target namespace
	Processing a query against the target namespace
	Enumerating classes or instances that are associated with a specific Common Information Model (CIM) object
	Enumerating the names of classes or instances associated with a specific Common Information Model (CIM) object
	Enumerating the association objects that refer to a specific target class or instance
	Enumerating the names of the association objects that refer to a specific target class or instance
	Retrieving a single property value from an instance in the target namespace
	Setting a single property value within an instance in the target namespace
	Retrieving a single qualifier declaration from the target namespace
	Creating or modifying a qualifier declaration in the target namespace
	Enumerating qualifier declarations from the target namespace
	Common Information Model (CIM) agent communication methods that cannot be used
	DeleteClass method (not supported)
	CreateClass method (not supported)
	ModifyClass method (not supported)
	DeleteQualifier method (not supported)

	Return error codes

	Chapter 4. Functional profiles, diagrams, and methods
	Block Server performance profile
	Block Server Performance object model
	Block Server Performance methods
	Obtaining performance statistics data
	Obtaining volume or host statistics

	Block Services profile
	Block Services object model
	Block Services methods
	Creating or modifying a virtual pool or snapshot pool
	Deleting a storage pool
	Creating, modifying, and/or moving multiple volumes in a single method call
	Creating, modifying, and/or moving a single volume
	Deleting a single volume
	Deleting multiple volumes concurrently
	Determining sizes to use to create elements from the primordial storage pool
	Determining sizes to use to create elements from the virtual storage pool
	Creating a concrete storage pool
	Creating a storage volume

	iSCI Target Ports profile
	iSCI Target Ports object model
	iSCSI Target Ports methods
	Creating an IP endpoint
	Parameters

	Modifying an IP endpoint
	Parameters

	Deleting an IP endpoint
	Parameters

	Masking and Mapping profile
	Masking and Mapping object model
	Masking and Mapping methods
	Creating a storage hardware ID
	Deleting a storage hardware ID
	Creating a hardware ID collection
	Adding hardware IDs to a collection
	Assigning volumes to a storage hardware ID
	Removing access to volumes from a storage hardware ID
	Deleting an existing protocol controller
	Example configuration procedures using the Masking and Mapping profile

	Indication profile
	Replication Services profile
	Replication Services object model
	Replication Services methods
	Group management
	Creating a consistency group
	Deleting a consistency group
	Adding volumes to a consistency group
	Removing volumes from a consistency group
	Replication management
	Creating a snapshot or clone
	Creating a snapshot group for a consistency group
	Restoring a snapshot to a volume or manipulating a mirror consistency group
	Modifying a list of synchronizations using a batch operation
	Retrieving target elements
	Retrieving snapshot or mirror relationships
	Retrieving strings of references to snapshots, snapshot groups, or mirror relationships
	Retrieving peer systems
	Creating new storage objects that are replicas of specified source storage objects

	Replication Services indications

	Job Control profile
	Job Control object model

	Thin provisioning profile
	Thin Provisioning object model
	Thin Provisioning methods
	Creating an IBMTSDS_VirtualPoolSetting instance
	Modifying the properties of a newly created IBMTSDS_VirtualPoolSetting instance
	Deleting a new IBMTSDS_VirtualPoolSetting instance
	Creating or modifying a thin provisioning virtual pool
	Creating a thin provisioning pool

	Thin Provisioning indications

	Chapter 5. Conformance tests
	Notices
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	V

